最优子结构 Optimal Sustructure
https://labuladong.github.io/algo/3/23/73/
a problem is said to have optimal substructure if an optimal solution can be constructed from optimal solutions of its subproblems. This property is used to determine the usefulness of dynamic programming and greedy algorithms for a problem
高楼扔鸡蛋进阶 就展示了如何改造问题,不同的最优子结构,可能导致不同的解法和效率。
再举个常见但也十分简单的例子,求一棵二叉树的最大值,不难吧(简单起见,假设节点中的值都是非负数):
你看这个问题也符合最优子结构,以 root
为根的树的最大值,可以通过两边子树(子问题)的最大值推导出来,结合刚才学校和班级的例子,很容易理解吧。
当然这也不是动态规划问题,旨在说明,最优子结构并不是动态规划独有的一种性质,能求最值的问题大部分都具有这个性质;但反过来,最优子结构性质作为动态规划问题的必要条件,一定是让你求最值的,以后碰到那种恶心人的最值题,思路往动态规划想就对了,这就是套路。
动态规划不就是从最简单的 base case 往后推导吗,可以想象成一个链式反应,以小博大。但只有符合最优子结构的问题,才有发生这种链式反应的性质。
找最优子结构的过程,其实就是证明状态转移方程正确性的过程,方程符合最优子结构就可以写暴力解了,写出暴力解就可以看出有没有重叠子问题了,有则优化,无则 OK。这也是套路,经常刷题的朋友应该能体会。
这里就不举那些正宗动态规划的例子了,读者可以翻翻历史文章,看看状态转移是如何遵循最优子结构的,这个话题就聊到这,下面再来看另外个动态规划迷惑行为。
二、dp 数组的遍历方向
我相信读者做动态规问题时,肯定会对 dp
数组的遍历顺序有些头疼。我们拿二维 dp
数组来举例,有时候我们是正向遍历:
有时候我们反向遍历:
有时候可能会斜向遍历:
甚至更让人迷惑的是,有时候发现正向反向遍历都可以得到正确答案,比如我们在 团灭股票问题 中有的地方就正反皆可。
那么,如果仔细观察的话可以发现其中的原因的。你只要把住两点就行了:
1、遍历的过程中,所需的状态必须是已经计算出来的。
2、遍历的终点必须是存储结果的那个位置。
下面来距离解释上面两个原则是什么意思。
比如编辑距离这个经典的问题,详解见前文 编辑距离详解,我们通过对 dp
数组的定义,确定了 base case 是 dp[..][0]
和 dp[0][..]
,最终答案是 dp[m][n]
;而且我们通过状态转移方程知道 dp[i][j]
需要从 dp[i-1][j]
, dp[i][j-1]
, dp[i-1][j-1]
转移而来,如下图:
那么,参考刚才说的两条原则,你该怎么遍历 dp
数组?肯定是正向遍历:
因为,这样每一步迭代的左边、上边、左上边的位置都是 base case 或者之前计算过的,而且最终结束在我们想要的答案 dp[m][n]
。
再举一例,回文子序列问题,详见前文 子序列问题模板,我们通过过对 dp
数组的定义,确定了 base case 处在中间的对角线,dp[i][j]
需要从 dp[i+1][j]
, dp[i][j-1]
, dp[i+1][j-1]
转移而来,想要求的最终答案是 dp[0][n-1]
,如下图:
这种情况根据刚才的两个原则,就可以有两种正确的遍历方式:
要么从左至右斜着遍历,要么从下向上从左到右遍历,这样才能保证每次 dp[i][j]
的左边、下边、左下边已经计算完毕,得到正确结果。
现在,你应该理解了这两个原则,主要就是看 base case 和最终结果的存储位置,保证遍历过程中使用的数据都是计算完毕的就行,有时候确实存在多种方法可以得到正确答案,可根据个人口味自行选择。
Last updated