intlongestPalindromeSubseq(strings){int n =s.size();// dp 数组全部初始化为 0 vector<vector<int>>dp(n,vector<int>(n,0));// base casefor(int i =0; i < n; i++)dp[i][i]=1;// 反着遍历保证正确的状态转移for(int i = n -2; i >=0; i--){for(int j = i +1; j < n; j++){// 状态转移方程if(s[i]==s[j])dp[i][j]=dp[i +1][j -1]+2;elsedp[i][j]=max(dp[i +1][j],dp[i][j -1]);}}// 整个 s 的最长回文子串长度returndp[0][n -1];}
for (int i = n - 2; i >= 0; i--) {
for (int j = i + 1; j < n; j++) {
// 状态转移方程
if (s[i] == s[j])
dp[i][j] = dp[i + 1][j - 1] + 2;
else
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}
}
for (int i = n - 2; i >= 0; i--) {
for (int j = i + 1; j < n; j++) {
// 在这里,一维 dp 数组中的数是什么?
if (s[i] == s[j])
dp[j] = dp[j - 1] + 2;
else
dp[j] = max(dp[j], dp[j - 1]);
}
}
for (int i = n - 2; i >= 0; i--) {
for (int j = i + 1; j < n; j++) {
if (s[i] == s[j])
// dp[i][j] = dp[i+1][j-1] + 2;
dp[j] = ?? + 2;
else
// dp[i][j] = max(dp[i+1][j], dp[i][j-1]);
dp[j] = max(dp[j], dp[j - 1]);
}
}
for (int i = n - 2; i >= 0; i--) {
// 存储 dp[i+1][j-1] 的变量
int pre = 0;
for (int j = i + 1; j < n; j++) {
int temp = dp[j];
if (s[i] == s[j])
// dp[i][j] = dp[i+1][j-1] + 2;
dp[j] = pre + 2;
else
dp[j] = max(dp[j], dp[j - 1]);
// 到下一轮循环,pre 就是 dp[i+1][j-1] 了
pre = temp;
}
}
if (s[5] == s[7])
// dp[5][7] = dp[i+1][j-1] + 2;
dp[7] = pre + 2;
// dp 数组全部初始化为 0
vector<vector<int>> dp(n, vector<int>(n, 0));
// base case
for (int i = 0; i < n; i++)
dp[i][i] = 1;
// 一维 dp 数组全部初始化为 1
vector<int> dp(n, 1);
int longestPalindromeSubseq(string s) {
int n = s.size();
// base case:一维 dp 数组全部初始化为 0
vector<int> dp(n, 1);
for (int i = n - 2; i >= 0; i--) {
int pre = 0;
for (int j = i + 1; j < n; j++) {
int temp = dp[j];
// 状态转移方程
if (s[i] == s[j])
dp[j] = pre + 2;
else
dp[j] = max(dp[j], dp[j - 1]);
pre = temp;
}
}
return dp[n - 1];
}