空间压缩
https://labuladong.github.io/algo/3/24/81/
动态规划技巧对于算法效率的提升非常可观,一般来说都能把指数级和阶乘级时间复杂度的算法优化成 O(N^2),堪称算法界的二向箔,把各路魑魅魍魉统统打成二次元。
但是,动态规划求解的过程中也是可以进行阶段性优化的,如果你认真观察某些动态规划问题的状态转移方程,就能够把它们解法的空间复杂度进一步降低,由 O(N^2) 降低到 O(N)。
PS:之前我在本文中误用了「状态压缩」这个词,有读者指出「状态压缩」这个词的含义是把多个状态通过二进制运算用一个整数表示出来,从而减少
dp
数组的维度。而本文描述的优化方式是通过观察状态转移方程的依赖关系,从而减少dp
数组的维度,确实和「状态压缩」有所区别。所以严谨起见,我把原来文章中的「状态压缩」都改为了「空间压缩」,避免名词的误用。
能够使用空间压缩技巧的动态规划都是二维 dp
问题,你看它的状态转移方程,如果计算状态 dp[i][j]
需要的都是 dp[i][j]
相邻的状态,那么就可以使用空间压缩技巧,将二维的 dp
数组转化成一维,将空间复杂度从 O(N^2) 降低到 O(N)。
什么叫「和 dp[i][j]
相邻的状态」呢,比如前文 最长回文子序列 中,最终的代码如下:
PS:我们本文不探讨如何推状态转移方程,只探讨对二维 DP 问题进行空间压缩的技巧。技巧都是通用的,所以如果你没看过前文,不明白这段代码的逻辑也无妨,完全不会阻碍你学会空间压缩。
你看我们对 dp[i][j]
的更新,其实只依赖于 dp[i+1][j-1], dp[i][j-1], dp[i+1][j]
这三个状态:
这就叫和 dp[i][j]
相邻,反正你计算 dp[i][j]
只需要这三个相邻状态,其实根本不需要那么大一个二维的 dp table 对不对?空间压缩的核心思路就是,将二维数组「投影」到一维数组:
思路很直观,但是也有一个明显的问题,图中 dp[i][j-1]
和 dp[i+1][j-1]
这两个状态处在同一列,而一维数组中只能容下一个,那么当我计算 dp[i][j]
时,他俩必然有一个会被另一个覆盖掉,怎么办?
这就是空间压缩的难点,下面就来分析解决这个问题,还是拿「最长回文子序列」问题距离,它的状态转移方程主要逻辑就是如下这段代码:
想把二维 dp
数组压缩成一维,一般来说是把第一个维度,也就是 i
这个维度去掉,只剩下 j
这个维度。压缩后的一维 dp
数组就是之前二维 dp
数组的 dp[i][..]
那一行。
我们先将上述代码进行改造,直接无脑去掉 i
这个维度,把 dp
数组变成一维:
上述代码的一维 dp
数组只能表示二维 dp
数组的一行 dp[i][..]
,那我怎么才能得到 dp[i+1][j-1], dp[i][j-1], dp[i+1][j]
这几个必要的的值,进行状态转移呢?
在代码中注释的位置,将要进行状态转移,更新 dp[j]
,那么我们要来思考两个问题:
1、在对 dp[j]
赋新值之前,dp[j]
对应着二维 dp
数组中的什么位置?
2、dp[j-1]
对应着二维 dp
数组中的什么位置?
对于问题 1,在对 dp[j]
赋新值之前,dp[j]
的值就是外层 for 循环上一次迭代算出来的值,也就是对应二维 dp
数组中 dp[i+1][j]
的位置。
对于问题 2,dp[j-1]
的值就是内层 for 循环上一次迭代算出来的值,也就是对应二维 dp
数组中 dp[i][j-1]
的位置。
那么问题已经解决了一大半了,只剩下二维 dp
数组中的 dp[i+1][j-1]
这个状态我们不能直接从一维 dp
数组中得到:
因为 for 循环遍历 i
和 j
的顺序为从左向右,从下向上,所以可以发现,在更新一维 dp
数组的时候,dp[i+1][j-1]
会被 dp[i][j-1]
覆盖掉,图中标出了这四个位置被遍历到的次序:
那么如果我们想得到 dp[i+1][j-1]
,就必须在它被覆盖之前用一个临时变量 temp
把它存起来,并把这个变量的值保留到计算 dp[i][j]
的时候。为了达到这个目的,结合上图,我们可以这样写代码:
别小看这段代码,这是一维 dp
最精妙的地方,会者不难,难者不会。为了清晰起见,我用具体的数值来拆解这个逻辑:
假设现在 i = 5, j = 7
且 s[5] == s[7]
,那么现在会进入下面这个逻辑对吧:
我问你这个 pre
变量是什么?是内层 for 循环上一次迭代的 temp
值。
那我再问你内层 for 循环上一次迭代的 temp
值是什么?是 dp[j-1]
也就是 dp[6]
,但这是外层 for 循环上一次迭代对应的 dp[6]
,也就是二维 dp
数组中的 dp[i+1][6] = dp[6][6]
。
也就是说,pre
变量就是 dp[i+1][j-1] = dp[6][6]
,也就是我们想要的结果。
那么现在我们成功对状态转移方程进行了降维打击,算是最硬的的骨头啃掉了,但注意到我们还有 base case 要处理呀:
如何把 base case 也打成一维呢?很简单,记住空间压缩就是投影,我们把 base case 投影到一维看看:
二维 dp
数组中的 base case 全都落入了一维 dp
数组,不存在冲突和覆盖,所以说我们直接这样写代码就行了:
至此,我们把 base case 和状态转移方程都进行了降维,实际上已经写出完整代码了:
本文就结束了,不过空间压缩技巧再牛逼,也是基于常规动态规划思路之上的。
你也看到了,使用空间压缩技巧对二维 dp
数组进行降维打击之后,解法代码的可读性变得非常差了,如果直接看这种解法,任何人都是一脸懵逼的。算法的优化就是这么一个过程,先写出可读性很好的暴力递归算法,然后尝试运用动态规划技巧优化重叠子问题,最后尝试用空间压缩技巧优化空间复杂度。
也就是说,你最起码能够熟练运用我们前文 动态规划框架套路详解 的套路找出状态转移方程,写出一个正确的动态规划解法,然后才有可能观察状态转移的情况,分析是否可能使用空间压缩技巧来优化。
希望读者能够稳扎稳打,层层递进,对于这种比较极限的优化,不做也罢。毕竟套路存于心,走遍天下都不怕!
Last updated