KRUSKAL 最小生成树算法

https://mp.weixin.qq.com/s/dJ9gqR3RVoeGnATlpMG39w

Kruskal 算法其实很容易理解和记忆,其关键是要熟悉并查集算法,如果不熟悉,建议先看下前文 Union-Find 并查集算法

最小生成树的定义见上文。

所谓最小生成树,就是图中若干边的集合(我们后文称这个集合为mst,最小生成树的英文缩写),你要保证这些边:

1、包含图中的所有节点。

2、形成的结构是树结构(即不存在环)。

3、权重和最小。

有之前题目的铺垫,前两条其实可以很容易地利用 Union-Find 算法做到,关键在于第 3 点,如何保证得到的这棵生成树是权重和最小的。

这里就用到了贪心思路(Greedy Algorithm):

将所有边按照权重从小到大排序,从权重最小的边开始遍历,如果这条边和mst中的其它边不会形成环,则这条边是最小生成树的一部分,将它加入mst集合;否则,这条边不是最小生成树的一部分,不要把它加入mst集合

这样,最后mst集合中的边就形成了最小生成树,下面我们看两道例题来运用一下 Kruskal 算法。

Refer: Leetcode 1135,1584

最后说下 Kruskal 算法的复杂度分析:

假设一幅图的节点个数为V,边的条数为E,首先需要O(E)的空间装所有边,而且 Union-Find 算法也需要O(V)的空间,所以 Kruskal 算法总的空间复杂度就是O(V + E)

时间复杂度主要耗费在排序,需要O(ElogE)的时间,Union-Find 算法所有操作的复杂度都是O(1),套一个 for 循环也不过是O(E),所以总的时间复杂度为O(ElogE)

本文就到这里,关于这种贪心思路的简单证明以及 Prim 最小生成树算法,我们留到后续的文章再聊。

Last updated