53. Maximum Subarray (E)

https://leetcode.com/problems/maximum-subarray/

Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

A subarray is a contiguous part of an array.

Example 1:

Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.

Example 2:

Input: nums = [1]
Output: 1

Example 3:

Input: nums = [5,4,-1,7,8]
Output: 23

Constraints:

  • 1 <= nums.length <= 105

  • -104 <= nums[i] <= 104

Follow up: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

Solution:

Version 1: DP:

其实第一次看到这道题,我首先想到的是 滑动窗口算法,因为我们前文说过嘛,滑动窗口算法就是专门处理子串/子数组问题的,这里不就是子数组问题么?

但是,稍加分析就发现,这道题还不能用滑动窗口算法,因为数组中的数字可以是负数

滑动窗口算法无非就是双指针形成的窗口扫描整个数组/子串,但关键是,你得清楚地知道什么时候应该移动右侧指针来扩大窗口,什么时候移动左侧指针来减小窗口。

而对于这道题目,你想想,当窗口扩大的时候可能遇到负数,窗口中的值也就可能增加也可能减少,这种情况下不知道什么时机去收缩左侧窗口,也就无法求出「最大子数组和」。

解决这个问题需要动态规划技巧,但是 dp 数组的定义比较特殊。按照我们常规的动态规划思路,一般是这样定义 dp 数组:

nums[0..i] 中的「最大的子数组和」为 dp[i]

如果这样定义的话,整个 nums 数组的「最大子数组和」就是 dp[n-1]。如何找状态转移方程呢?按照数学归纳法,假设我们知道了 dp[i-1],如何推导出 dp[i] 呢?

如下图,按照我们刚才对 dp 数组的定义,dp[i] = 5 ,也就是等于 nums[0..i] 中的最大子数组和:

那么在上图这种情况中,利用数学归纳法,你能用 dp[i] 推出 dp[i+1] 吗?

实际上是不行的,因为子数组一定是连续的,按照我们当前 dp 数组定义,并不能保证 nums[0..i] 中的最大子数组与 nums[i+1] 是相邻的,也就没办法从 dp[i] 推导出 dp[i+1]

所以说我们这样定义 dp 数组是不正确的,无法得到合适的状态转移方程。对于这类子数组问题,我们就要重新定义 dp 数组的含义:

nums[i] 为结尾的「最大子数组和」为 dp[i]

这种定义之下,想得到整个 nums 数组的「最大子数组和」,不能直接返回 dp[n-1],而需要遍历整个 dp 数组:

int res = Integer.MIN_VALUE;
for (int i = 0; i < n; i++) {
    res = Math.max(res, dp[i]);
}
return res;

依然使用数学归纳法来找状态转移关系:假设我们已经算出了 dp[i-1],如何推导出 dp[i] 呢?

可以做到,dp[i] 有两种「选择」,要么与前面的相邻子数组连接,形成一个和更大的子数组;要么不与前面的子数组连接,自成一派,自己作为一个子数组。

如何选择?既然要求「最大子数组和」,当然选择结果更大的那个啦:

// 要么自成一派,要么和前面的子数组合并
dp[i] = Math.max(nums[i], nums[i] + dp[i - 1]);

综上,我们已经写出了状态转移方程,就可以直接写出解法了:

int maxSubArray(int[] nums) {
    int n = nums.length;
    if (n == 0) return 0;
    // 定义:dp[i] 记录以 nums[i] 为结尾的「最大子数组和」
    int[] dp = new int[n];
    // base case
    // 第一个元素前面没有子数组
    dp[0] = nums[0];
    // 状态转移方程
    for (int i = 1; i < n; i++) {
        dp[i] = Math.max(nums[i], nums[i] + dp[i - 1]);
    }
    // 得到 nums 的最大子数组
    int res = Integer.MIN_VALUE;
    for (int i = 0; i < n; i++) {
        res = Math.max(res, dp[i]);
    }
    return res;
}

以上解法时间复杂度是 O(N),空间复杂度也是 O(N),较暴力解法已经很优秀了,不过注意到 dp[i] 仅仅和 dp[i-1] 的状态有关,那么我们可以施展前文 动态规划的降维打击 讲的技巧进行进一步优化,将空间复杂度降低:

int maxSubArray(int[] nums) {
    int n = nums.length;
    if (n == 0) return 0;
    // base case
    int dp_0 = nums[0];
    int dp_1 = 0, res = dp_0;

    for (int i = 1; i < n; i++) {
        // dp[i] = max(nums[i], nums[i] + dp[i-1])
        dp_1 = Math.max(nums[i], nums[i] + dp_0);
        dp_0 = dp_1;
        // 顺便计算最大的结果
        res = Math.max(res, dp_1);
    }
    
    return res;
}

最后总结

虽然说动态规划推状态转移方程确实比较玄学,但大部分还是有些规律可循的。

今天这道「最大子数组和」就和「最长递增子序列」非常类似,dp 数组的定义是「以 nums[i] 为结尾的最大子数组和/最长递增子序列为 dp[i]」。因为只有这样定义才能将 dp[i+1]dp[i] 建立起联系,利用数学归纳法写出状态转移方程。

Version 2: Greedy

public class Solution {
    public int maxSubArray(int[] A) {
        if (A == null || A.length == 0){
            return 0;
        }
        //max记录全局最大值,sum记录区间和,如果当前sum>0,那么可以继续和后面的数求和,否则就从0开始
        int max = Integer.MIN_VALUE, sum = 0;
        for (int i = 0; i < A.length; i++) {
            sum += A[i];
            max = Math.max(max, sum);
            sum = Math.max(sum, 0);
        }

        return max;
    }
}

Version 3: Prefix Sum

public class Solution {
    public int maxSubArray(int[] A) {
        if (A == null || A.length == 0){
            return 0;
        }
        //max记录全局最大值,sum记录前i个数的和,minSum记录前i个数中0-k的最小值
        int max = Integer.MIN_VALUE, sum = 0, minSum = 0;
        for (int i = 0; i < A.length; i++) {
            sum += A[i];
            max = Math.max(max, sum - minSum);
            minSum = Math.min(minSum, sum);
        }

        return max;
    }
}

Last updated