53. Maximum Subarray (E)
https://leetcode.com/problems/maximum-subarray/
Given an integer array nums
, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
A subarray is a contiguous part of an array.
Example 1:
Example 2:
Example 3:
Constraints:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
Follow up: If you have figured out the O(n)
solution, try coding another solution using the divide and conquer approach, which is more subtle.
Solution:
Version 1: DP:
其实第一次看到这道题,我首先想到的是 滑动窗口算法,因为我们前文说过嘛,滑动窗口算法就是专门处理子串/子数组问题的,这里不就是子数组问题么?
但是,稍加分析就发现,这道题还不能用滑动窗口算法,因为数组中的数字可以是负数。
滑动窗口算法无非就是双指针形成的窗口扫描整个数组/子串,但关键是,你得清楚地知道什么时候应该移动右侧指针来扩大窗口,什么时候移动左侧指针来减小窗口。
而对于这道题目,你想想,当窗口扩大的时候可能遇到负数,窗口中的值也就可能增加也可能减少,这种情况下不知道什么时机去收缩左侧窗口,也就无法求出「最大子数组和」。
解决这个问题需要动态规划技巧,但是 dp
数组的定义比较特殊。按照我们常规的动态规划思路,一般是这样定义 dp
数组:
nums[0..i]
中的「最大的子数组和」为 dp[i]
。
如果这样定义的话,整个 nums
数组的「最大子数组和」就是 dp[n-1]
。如何找状态转移方程呢?按照数学归纳法,假设我们知道了 dp[i-1]
,如何推导出 dp[i]
呢?
如下图,按照我们刚才对 dp
数组的定义,dp[i] = 5
,也就是等于 nums[0..i]
中的最大子数组和:
那么在上图这种情况中,利用数学归纳法,你能用 dp[i]
推出 dp[i+1]
吗?
实际上是不行的,因为子数组一定是连续的,按照我们当前 dp
数组定义,并不能保证 nums[0..i]
中的最大子数组与 nums[i+1]
是相邻的,也就没办法从 dp[i]
推导出 dp[i+1]
。
所以说我们这样定义 dp
数组是不正确的,无法得到合适的状态转移方程。对于这类子数组问题,我们就要重新定义 dp
数组的含义:
以 nums[i]
为结尾的「最大子数组和」为 dp[i]
。
这种定义之下,想得到整个 nums
数组的「最大子数组和」,不能直接返回 dp[n-1]
,而需要遍历整个 dp
数组:
依然使用数学归纳法来找状态转移关系:假设我们已经算出了 dp[i-1]
,如何推导出 dp[i]
呢?
可以做到,dp[i]
有两种「选择」,要么与前面的相邻子数组连接,形成一个和更大的子数组;要么不与前面的子数组连接,自成一派,自己作为一个子数组。
如何选择?既然要求「最大子数组和」,当然选择结果更大的那个啦:
综上,我们已经写出了状态转移方程,就可以直接写出解法了:
以上解法时间复杂度是 O(N),空间复杂度也是 O(N),较暴力解法已经很优秀了,不过注意到 dp[i]
仅仅和 dp[i-1]
的状态有关,那么我们可以施展前文 动态规划的降维打击 讲的技巧进行进一步优化,将空间复杂度降低:
最后总结
虽然说动态规划推状态转移方程确实比较玄学,但大部分还是有些规律可循的。
今天这道「最大子数组和」就和「最长递增子序列」非常类似,dp
数组的定义是「以 nums[i]
为结尾的最大子数组和/最长递增子序列为 dp[i]
」。因为只有这样定义才能将 dp[i+1]
和 dp[i]
建立起联系,利用数学归纳法写出状态转移方程。
Version 2: Greedy
Version 3: Prefix Sum
Last updated