1631. Path With Minimum Effort (M)

https://leetcode.com/problems/path-with-minimum-effort/

You are a hiker preparing for an upcoming hike. You are given heights, a 2D array of size rows x columns, where heights[row][col] represents the height of cell (row, col). You are situated in the top-left cell, (0, 0), and you hope to travel to the bottom-right cell, (rows-1, columns-1) (i.e., 0-indexed). You can move up, down, left, or right, and you wish to find a route that requires the minimum effort.

A route's effort is the maximum absolute difference in heights between two consecutive cells of the route.

Return the minimum effort required to travel from the top-left cell to the bottom-right cell.

Example 1:

Input: heights = [[1,2,2],[3,8,2],[5,3,5]]
Output: 2
Explanation: The route of [1,3,5,3,5] has a maximum absolute difference of 2 in consecutive cells.
This is better than the route of [1,2,2,2,5], where the maximum absolute difference is 3.

Example 2:

Input: heights = [[1,2,3],[3,8,4],[5,3,5]]
Output: 1
Explanation: The route of [1,2,3,4,5] has a maximum absolute difference of 1 in consecutive cells, which is better than route [1,3,5,3,5].

Example 3:

Input: heights = [[1,2,1,1,1],[1,2,1,2,1],[1,2,1,2,1],[1,2,1,2,1],[1,1,1,2,1]]
Output: 0
Explanation: This route does not require any effort.

Constraints:

  • rows == heights.length

  • columns == heights[i].length

  • 1 <= rows, columns <= 100

  • 1 <= heights[i][j] <= 106

Solution:

我们常见的二维矩阵题目,如果让你从左上角走到右下角,比较简单的题一般都会限制你只能向右或向下走,但这道题可没有限制哦,你可以上下左右随便走,只要路径的「体力消耗」最小就行。

如果你把二维数组中每个 (x, y) 坐标看做一个节点,它的上下左右坐标就是相邻节点,它对应的值和相邻坐标对应的值之差的绝对值就是题目说的「体力消耗」,你就可以理解为边的权重。

这样一想,是不是就在让你以左上角坐标为起点,以右下角坐标为终点,计算起点到终点的最短路径?Dijkstra 算法是不是可以做到?

// 输入起点 start 和终点 end,计算起点到终点的最短距离
int dijkstra(int start, int end, List<Integer>[] graph)

只不过,这道题中评判一条路径是长还是短的标准不再是路径经过的权重总和,而是路径经过的权重最大值

明白这一点,再想一下使用 Dijkstra 算法的前提,加权有向图,没有负权重边,求最短路径,OK,可以使用,咱们来套框架。

二维矩阵抽象成图,我们先实现一下图的 adj 方法,之后的主要逻辑会清晰一些:

// 方向数组,上下左右的坐标偏移量
int[][] dirs = new int[][]{{0,1}, {1,0}, {0,-1}, {-1,0}};

// 返回坐标 (x, y) 的上下左右相邻坐标
List<int[]> adj(int[][] matrix, int x, int y) {
    int m = matrix.length, n = matrix[0].length;
    // 存储相邻节点
    List<int[]> neighbors = new ArrayList<>();
    for (int[] dir : dirs) {
        int nx = x + dir[0];
        int ny = y + dir[1];
        if (nx >= m || nx < 0 || ny >= n || ny < 0) {
            // 索引越界
            continue;
        }
        neighbors.add(new int[]{nx, ny});
    }
    return neighbors;
}

类似的,我们现在认为一个二维坐标 (x, y) 是图中的一个节点,所以这个 State 类也需要修改一下:

class State {
    // 矩阵中的一个位置
    int x, y;
    // 从起点 (0, 0) 到当前位置的最小体力消耗(距离)
    int effortFromStart;

    State(int x, int y, int effortFromStart) {
        this.x = x;
        this.y = y;
        this.effortFromStart = effortFromStart;
    }
}

接下来,就可以套用 Dijkstra 算法的代码模板了:

// Dijkstra 算法,计算 (0, 0) 到 (m - 1, n - 1) 的最小体力消耗
int minimumEffortPath(int[][] heights) {
    int m = heights.length, n = heights[0].length;
    // 定义:从 (0, 0) 到 (i, j) 的最小体力消耗是 effortTo[i][j]
    int[][] effortTo = new int[m][n];
    // dp table 初始化为正无穷
    for (int i = 0; i < m; i++) {
        Arrays.fill(effortTo[i], Integer.MAX_VALUE);
    }
    // base case,起点到起点的最小消耗就是 0
    effortTo[0][0] = 0;

    // 优先级队列,effortFromStart 较小的排在前面
    Queue<State> pq = new PriorityQueue<>((a, b) -> {
        return a.effortFromStart - b.effortFromStart;
    });
    
    // 从起点 (0, 0) 开始进行 BFS
    pq.offer(new State(0, 0, 0));

    while (!pq.isEmpty()) {
        State curState = pq.poll();
        int curX = curState.x;
        int curY = curState.y;
        int curEffortFromStart = curState.effortFromStart;
        
        // 到达终点提前结束
        if (curX == m - 1 && curY == n - 1) {
            return curEffortFromStart;
        }
        
        if (curEffortFromStart > effortTo[curX][curY]) {
            continue;
        }
        // 将 (curX, curY) 的相邻坐标装入队列
        for (int[] neighbor : adj(heights, curX, curY)) {
            int nextX = neighbor[0];
            int nextY = neighbor[1];
            // 计算从 (curX, curY) 达到 (nextX, nextY) 的消耗
            int effortToNextNode = Math.max(
                effortTo[curX][curY], 
                Math.abs(heights[curX][curY] - heights[nextX][nextY])
            );
            // 更新 dp table
            if (effortTo[nextX][nextY] > effortToNextNode) {
                effortTo[nextX][nextY] = effortToNextNode;
                pq.offer(new State(nextX, nextY, effortToNextNode));
            }
        }
    }
    // 正常情况不会达到这个 return
    return -1;
}

你看,稍微改一改代码模板,这道题就解决了。

Last updated

Was this helpful?