Nine Chapter
  • Introduction
    • Summary
  • 1.Binary Search
    • Introduction
    • 458.Last position of target
    • 600.Smallest Rectangle Enclosing Black Pixels
    • 585.Maximum Number in Mountain Sequence
    • 183.Wood Cut
    • 62.Search in Rotated Sorted Array
    • 63.Search in Rotated Sorted Array II
    • 159.Find Minimum in Rotated Sorted Array
    • 160.Find Minimum in Rotated Sorted Array II
    • 75.Find Peak Element
    • 60.Search Insert Position
    • 28.Search a 2D Matrix
    • 240. Search a 2D Matrix II
    • 14.First Position of Target
    • 74.First Bad Version
    • 875. Koko Eating Bananas
    • 1011. Capacity To Ship Packages Within D Days (M)
    • 410. Split Array Largest Sum (H)
    • 475. Heaters (M)
    • 1044. Longest Duplicate Substring (H)
  • 2.Binary Tree
    • Summary
      • 二叉树八股文:递归改迭代
      • BST
      • Frame
    • 66.Binary Tree Preorder Traversal
    • 67.🌟Binary Tree Inorder Traversal
    • 145. Binary Tree Postorder Traversal (E)
    • 98.Validate Binary Search Tree(M)
    • 85.Insert Node in a Binary Search Tree
    • 104. Maximum Depth of Binary Tree(E)
    • 235. Lowest Common Ancestor of a Binary Search Tree (E)
    • 236.Lowest Common Ancestor of Binary Tree(M)
    • 578.Lowest Common Ancestor III
    • 1120.Subtree with Maximum Average
    • 596.Minimum Subtree
    • 480.Binary Tree Paths
    • 453.Flatten Binary Tree to Linked List
    • 110.Balanced Binary Tree
    • 376.Binary Tree Path Sum
    • 246.Binary Tree Path Sum II
    • 475.Binary Tree Maximum Path Sum II
    • 124.Binary Tree Maximum Path Sum (H)
    • Path Sum (*)
      • 112. Path Sum
      • 113. Path Sum II
      • 437. Path Sum III
    • 177.Convert Sorted Array to Binary Search Tree With Minimal Height
    • 7.Binary Tree Serialization
    • 72,73.Construct Binary Tree
    • Binary Search Tree Path
    • 245.Subtree
    • 469.Identical Binary Tree
    • 87.Remove Node in Binary Search Tree
    • 116.Populating Next Right Pointers in Each Node (M)
    • 114. Flatten Binary Tree to Linked List(M)
    • 654.Maximum Binary Tree (M)
    • 105. 🌟Construct Binary Tree from Preorder and Inorder Traversal (M)
    • 106. Construct Binary Tree from Inorder and Postorder Traversal (M)
    • 652. Find Duplicate Subtrees(M)
    • 230. Kth Smallest Element in a BST (M)
    • 538&1038. Convert BST to Greater Tree
    • 450. Delete Node in a BST (M)
    • 701. Insert into a Binary Search Tree (M)
    • 96. Unique Binary Search Trees
    • 95. Unique Binary Search Trees II (M)
    • 1373. Maximum Sum BST in Binary Tree (H)
    • 297. Serialize and Deserialize Binary Tree (H)
    • 222. Count Complete Tree Nodes (M)
    • 1120. Maximum Average Subtree
    • 341. Flatten Nested List Iterator
    • 333. Largest BST Subtree (M)
    • 543. Diameter of Binary Tree
    • Binary Tree Longest Consecutive Sequence(*)
      • 298.Binary Tree Longest Consecutive Sequence
      • 549. Binary Tree Longest Consecutive Sequence II (M)
  • 3.Breadth First Search
    • Introduction
      • BFS 算法解题套路框架
      • 双向 BFS 优化
    • 102.Binary Tree Level Order Traversal (M)
    • 103. Binary Tree Zigzag Level Order Traversal (M)
    • 107.Binary Tree Level Order Traversal II(M)
    • 618.Search Graph Nodes
    • 207.Course Schedule (M)
    • 210.Course Schedule II (M)
    • 611.Knight Shortest Path
    • 598.Zombie in Matrix
    • 133.Clone Graph (M)
    • 178.Graph Valid Tree
    • 7.Binary Tree Serialization
    • 574.Build Post Office
    • 573.Build Post Office II
    • 127.Topological Sorting
    • 127.Word Ladder
    • 126. Word Ladder II
    • (LeetCode)515.Find Largest Value in Each Tree Row
    • 111. Minimum Depth of Binary Tree (E)
    • 752. Open the Lock
    • 542. 01 Matrix (M)
    • 1306. Jump Game III (M)
  • 4.Depth First Search+BackTracking
    • Summary
      • FloodFill 算法
    • 136.Palindrome Partitioning
    • 39.Combination Sum
    • 40.Combination Sum II
    • 377. Combination Sum IV
    • 77.Combinations (M)
    • 78.Subsets (M)
    • 90.Subsets II (M)
    • 46.🌟Permutations
    • 47.Permutations II
    • 582.Word Break II
    • 490.The Maze (M)
    • 51.N-Queens (H)
    • 52. N-Queens II (H)
    • 698. Partition to K Equal Sum Subsets (M)
    • 22. Generate Parentheses (M)
    • 岛屿问题
      • 200.Number of Islands (M)
      • 1254. Number of Closed Islands (M)
      • 1020. Number of Enclaves (M)
      • 695. Max Area of Island (M)
      • 1905. Count Sub Islands (M)
      • 694. Number of Distinct Islands
    • 131. Palindrome Partitioning (M)
    • 967. Numbers With Same Consecutive Differences (M)
    • 79. Word Search (M)
    • 212. Word Search II (M)
    • 472. Concatenated Words (H)
    • Page 2
    • 291. Word Pattern II
    • 17. Letter Combinations of a Phone Number (M)
  • 5.LinkedList
    • Summary
      • 单链表的倒数第 k 个节点
      • Merge two/k sorted LinkedList
      • Middle of the Linked List
      • 判断链表是否包含环
      • 两个链表是否相交 Intersection of Two Linked Lists
      • 递归反转链表
      • 如何判断回文链表
    • 599.Insert into a Cyclic Sorted List
    • 21.Merge Two Sorted Lists (E)
    • 23.Merge k Sorted Lists (H)
    • 105.Copy List with Random Pointer
    • 141.Linked List Cycle (E)
    • 142.Linked List Cycle II (M)
    • 148.Sort List (M)
    • 86.Partition List (M)
    • 83.Remove Duplicates from Sorted List(E)
    • 82.Remove Duplicates from Sorted List II (M)
    • 206.Reverse Linked List (E)
    • 92.Reverse Linked List II (M)
    • 143.Reorder List (M)
    • 19.Remove Nth Node From End of List (E)
    • 170.Rotate List
    • 🤔25.Reverse Nodes in k-Group (H)
    • 452.Remove Linked List Elements
    • 167.Add Two Numbers
    • 221.Add Two Numbers II
    • 876. Middle of the Linked List (E)
    • 160. Intersection of Two Linked Lists (E)
    • 234. Palindrome Linked List (E)
    • 2130. Maximum Twin Sum of a Linked List (M)
  • 6.Array
    • Summary
      • 前缀和思路PrefixSum
      • 差分数组 Difference Array
      • 双指针Two Pointers
      • 滑动窗口算法算法
      • Sliding windows II
      • 二分搜索Binary Search
      • 排序算法
      • 快速选择算法
    • 604.Window Sum
    • 138.Subarray Sum
    • 41.Maximum Subarray
    • 42.Maximum Subarray II
    • 43.Maximum Subarray III
    • 620.Maximum Subarray IV
    • 621.Maximum Subarray V
    • 6.Merge Two Sorted Arrays
    • 88.Merge Sorted Array
    • 547.Intersection of Two Arrays
    • 548.Intersection of Two Arrays II
    • 139.Subarray Sum Closest
    • 65.Median of two Sorted Arrays
    • 636.132 Pattern
    • 402.Continuous Subarray Sum
    • 303. Range Sum Query - Immutable (E)
    • 304.Range Sum Query 2D - Immutable (M)
    • 560. Subarray Sum Equals K (M)
    • 370. Range Addition(M)
    • 1109. Corporate Flight Bookings(M)
    • 1094. Car Pooling (M)
    • 76. Minimum Window Substring(H)
    • 567. Permutation in String (M)
    • 438. Find All Anagrams in a String(M)
    • 3. Longest Substring Without Repeating Characters (M)
    • 380. Insert Delete GetRandom O(1) (M)
    • 710. Random Pick with Blacklist (H)
    • 528. Random Pick with Weight (M)
    • 26. Remove Duplicates from Sorted Array (E)
    • 27. Remove Element (E)
    • 283. Move Zeroes (E)
    • 659. Split Array into Consecutive Subsequences (M)
    • 4. Median of Two Sorted Arrays (H)
    • 48. Rotate Image (M)
    • 54. Spiral Matrix (M)
    • 59. Spiral Matrix II (M)
    • 918. Maximum Sum Circular Subarray
    • 128. Longest Consecutive Sequence (M)
    • 238. Product of Array Except Self (M)
    • 1438. Longest Continuous Subarray With Absolute Diff Less Than or Equal to Limit (M)
    • 1151. Minimum Swaps to Group All 1's Together (M)
    • 2134. Minimum Swaps to Group All 1's Together II
    • 2133. Check if Every Row and Column Contains All Numbers
    • 632. Smallest Range Covering Elements from K Lists (H)
    • 36. Valid Sudoku (M)
    • 383. Ransom Note
    • 228. Summary Ranges
  • 7.Two pointers
    • Summary
      • Two Sum
      • 2Sum 3Sum 4Sum 问题
    • 1.Two Sum I
    • 170.Two Sum III - Data structure design
    • 167.Two Sum II- Input array is sorted
    • 609.Two Sum - Less than or equal to target
    • 610.Two Sum - Difference equals to targe
    • 587.Two Sum - Unique pairs
    • 533.Two Sum - Closest to target
    • 443.Two Sum - Greater than target
    • 653. Two Sum IV - Input is a BST (M)
    • 57.3Sum
    • 59.3Sum Closest
    • 58.4Sum
    • 148.Sort Colors
    • 143.Sort Colors II
    • 31.Partition Array
    • 625.Partition Array II
    • 382.Triangle Count
      • 611. Valid Triangle Number
    • 521.Remove Duplicate Numbers in Array
    • 167. Two Sum II - Input Array Is Sorted (E)
    • 870. Advantage Shuffle (M)
    • 9. Palindrome Number (E)
    • 125. Valid Palindrome(E)
    • 5. Longest Palindromic Substring (M)
    • 42. Trapping Rain Water
    • 11. Container With Most Water (M)
    • 658. Find K Closest Elements (M)
    • 392. Is Subsequence
  • 8.Data Structure
    • Summary
      • 数据结构的存储方式
      • 单调栈
      • 单调队列
      • 二叉堆 Binary Heap
      • TreeMap
      • TreeSet
      • 🌟Trie
      • Trie Application
    • 155. Min Stack (E)
    • 716. Max Stack (E)
    • 1648. Sell Diminishing-Valued Colored Balls
    • 232. Implement Queue using Stacks (E)
    • 225. Implement Stack using Queues(E)
    • 84.Largest Rectangle in Histogram
    • 128.Hash Function
    • Max Tree
    • 544.Top k Largest Numbers
    • 545.Top k Largest Numbers II
    • 613.High Five
    • 606.Kth Largest Element II
    • 5.Kth Largest Element
    • 129.Rehashing
    • 4.Ugly Number II
    • 517.Ugly Number
    • 28. Implement strStr()
    • 594.strStr II
    • 146.LRU Cache
    • 460.LFU Cache
    • 486.Merge k Sorted Arrays
    • 130.Heapify
    • 215. Kth Largest Element in an Array (M)
    • 612.K Closest Points
    • 692. Top K Frequent Words
    • 347.Top K Frequent Elements
    • 601.Flatten 2D Vector
    • 540.Zigzag Iterator
    • 541.Zigzag Iterator II
    • 423.Valid Parentheses
    • 488.Happy Number
    • 547.Intersection of Two Arrays
    • 548.Intersection of Two Arrays II
    • 627.Longest Palindrome
    • 638.Strings Homomorphism
    • 138.Subarray Sum
    • 647.Substring Anagrams
    • 171.Anagrams
    • 739. Daily Temperatures(M)
    • 496. Next Greater Element I (E)
    • 503. Next Greater Element II(M)
    • 316. Remove Duplicate Letters(M) & 1081. Smallest Subsequence of Distinct Characters
    • 239. Sliding Window Maximum (H)
    • 355. Design Twitter (M)
    • 895. Maximum Frequency Stack (H)
    • 20. Valid Parentheses (E)
    • 921. Minimum Add to Make Parentheses Valid (M)
    • 1541. Minimum Insertions to Balance a Parentheses String (M)
    • 32. Longest Valid Parentheses (H)
    • Basic Calculator (*)
      • 224. Basic Calculator
      • 227. Basic Calculator II (M)
    • 844. Backspace String Compare
    • 295. Find Median from Data Stream
    • 208. Implement Trie (Prefix Tree)
    • 461.Kth Smallest Numbers in Unsorted Array
    • 1152.Analyze user website visit pattern
    • 811. Subdomain Visit Count (M)
    • 71. Simplify Path (M)
    • 362. Design Hit Counter
  • 9.Dynamic Programming
    • Summary
      • 最优子结构 Optimal Sustructure
      • 子序列解题模板
      • 空间压缩
      • 背包问题
        • Untitled
      • 股票买卖问题
      • KMP
    • 109.Triangle
    • 110.Minimum Path Sum
    • 114.Unique Paths
    • 115.Unique Paths II
    • 70.Climbing Stairs
    • 272.Climbing StairsII
    • 116.Jump Game
    • 117.Jump Game II
    • 322.Coin Change
    • 518. Coin Change 2 ()
    • Backpack I~VI
      • LintCode 563.Backpack V (M)
    • Best Time to Buy and Sell Stock(*)
      • 121. Best Time to Buy and Sell Stock
      • 122. Best Time to Buy and Sell Stock II (M)
      • 123. Best Time to Buy and Sell Stock III (H)
      • 188. Best Time to Buy and Sell Stock IV (H)
      • 309. Best Time to Buy and Sell Stock with Cooldown (M)
      • 714. Best Time to Buy and Sell Stock with Transaction Fee (M)
    • 394.Coins in a line
    • 395.Coins in a Line II
    • 509. Fibonacci Number (E)
    • 931. Minimum Falling Path Sum (M)
    • 494. Target Sum (M)
    • 72. Edit Distance (H)
    • 300.Longest Increasing Subsequence
    • 1143. Longest Common Subsequence (M)
    • 718. Maximum Length of Repeated Subarray
    • 583. Delete Operation for Two Strings (M)
    • 712. Minimum ASCII Delete Sum for Two Strings(M)
    • 53. Maximum Subarray (E)
    • 516. Longest Palindromic Subsequence (M)
    • 1312. Minimum Insertion Steps to Make a String Palindrome (H)
    • 416. Partition Equal Subset Sum (M)
    • 64. Minimum Path Sum(M)
    • 651. 4 Keys Keyboards (M)
    • House Robber (*)
      • 198. House Robber (M)
      • 213. House Robbber II
      • 337. House Robber III (M)
    • Word Break (*)
      • 139.Word Break (M)
    • 140. Word Break II (H)
    • 828. Count Unique Characters of All Substrings of a Given String (H)
    • 174. Dungeon Game (H)
    • 1567. Maximum Length of Subarray With Positive Product (M)
  • 10. Graph
    • Introduction
      • 有向图的环检测
      • 拓扑排序
      • 二分图判定
      • Union-Find
      • 最小生成树(Minimum Spanning Tree)算法
        • KRUSKAL 最小生成树算法
        • Prim 最小生成树算法
      • Dijkstra 最短路径算法
      • BFS vs DFS
    • 797. All Paths From Source to Target (M)
    • 785. Is Graph Bipartite? (M)
    • 886. Possible Bipartition (M)
    • 130. Surrounded Regions (M)
    • 990. Satisfiability of Equality Equations (M)
    • 721. Accounts Merge (M)
    • 323. Number of Connected Components in an Undirected Graph (M)
    • 261. Graph Valid Tree
    • 1135. Connecting Cities With Minimum Cost
    • 1584. Min Cost to Connect All Points (M)
    • 277. Find the Celebrity (M)
    • 743. Network Delay Time (M)
    • 1631. Path With Minimum Effort (M)
    • 1514. Path with Maximum Probability (M)
    • 589.Connecting Graph
    • 🌟787. Cheapest Flights Within K Stops (M)
    • 2050. Parallel Courses III (H)
    • 1293. Shortest Path in a Grid with Obstacles Elimination (H)
    • 864. Shortest Path to Get All Keys (H)
    • 269. Alien Dictionary (H)
    • 1192. Critical Connections in a Network (H)
    • 529. Minesweeper (M)
  • 11.Math
    • Page 1
Powered by GitBook
On this page

Was this helpful?

  1. 10. Graph

1514. Path with Maximum Probability (M)

https://leetcode.com/problems/path-with-maximum-probability/

Previous1631. Path With Minimum Effort (M)Next589.Connecting Graph

Last updated 3 years ago

Was this helpful?

You are given an undirected weighted graph of n nodes (0-indexed), represented by an edge list where edges[i] = [a, b] is an undirected edge connecting the nodes a and b with a probability of success of traversing that edge succProb[i].

Given two nodes start and end, find the path with the maximum probability of success to go from start to end and return its success probability.

If there is no path from start to end, return 0. Your answer will be accepted if it differs from the correct answer by at most 1e-5.

Example 1:

Input: n = 3, edges = [[0,1],[1,2],[0,2]], succProb = [0.5,0.5,0.2], start = 0, end = 2
Output: 0.25000
Explanation: There are two paths from start to end, one having a probability of success = 0.2 and the other has 0.5 * 0.5 = 0.25.

Example 2:

Input: n = 3, edges = [[0,1],[1,2],[0,2]], succProb = [0.5,0.5,0.3], start = 0, end = 2
Output: 0.30000

Example 3:

Input: n = 3, edges = [[0,1]], succProb = [0.5], start = 0, end = 2
Output: 0.00000
Explanation: There is no path between 0 and 2.

Constraints:

  • 2 <= n <= 10^4

  • 0 <= start, end < n

  • start != end

  • 0 <= a, b < n

  • a != b

  • 0 <= succProb.length == edges.length <= 2*10^4

  • 0 <= succProb[i] <= 1

  • There is at most one edge between every two nodes.

Solution:

我说这题一看就是 Dijkstra 算法,但聪明的你肯定会反驳我:

1、这题给的是无向图,也可以用 Dijkstra 算法吗?

2、更重要的是,Dijkstra 算法计算的是最短路径,计算的是最小值,这题让你计算最大概率是一个最大值,怎么可能用 Dijkstra 算法呢?

问得好!

重点说说最大值和最小值这个问题,其实 Dijkstra 和很多最优化算法一样,计算的是「最优值」,这个最优值可能是最大值,也可能是最小值。

标准 Dijkstra 算法是计算最短路径的,但你有想过为什么 Dijkstra 算法不允许存在负权重边么?

因为 Dijkstra 计算最短路径的正确性依赖一个前提:路径中每增加一条边,路径的总权重就会增加。

这个前提的数学证明大家有兴趣可以自己搜索一下,我这里只说结论,其实你把这个结论反过来也是 OK 的:

如果你想计算最长路径,路径中每增加一条边,路径的总权重就会减少,要是能够满足这个条件,也可以用 Dijkstra 算法。

你看这道题是不是符合这个条件?边和边之间是乘法关系,每条边的概率都是小于 1 的,所以肯定会越乘越小。

只不过,这道题的解法要把优先级队列的排序顺序反过来,一些 if 大小判断也要反过来,我们直接看解法代码吧:

double maxProbability(int n, int[][] edges, double[] succProb, int start, int end) {
    List<double[]>[] graph = new LinkedList[n];
    for (int i = 0; i < n; i++) {
        graph[i] = new LinkedList<>();
    }
    // 构造邻接表结构表示图
    for (int i = 0; i < edges.length; i++) {
        int from = edges[i][0];
        int to = edges[i][1];
        double weight = succProb[i];
        // 无向图就是双向图;先把 int 统一转成 double,待会再转回来
        graph[from].add(new double[]{(double)to, weight});
        graph[to].add(new double[]{(double)from, weight});
    }
    
    return dijkstra(start, end, graph);
}

class State {
    // 图节点的 id
    int id;
    // 从 start 节点到达当前节点的概率
    double probFromStart;

    State(int id, double probFromStart) {
        this.id = id;
        this.probFromStart = probFromStart;
    }
}

double dijkstra(int start, int end, List<double[]>[] graph) {
    // 定义:probTo[i] 的值就是节点 start 到达节点 i 的最大概率
    double[] probTo = new double[graph.length];
    // dp table 初始化为一个取不到的最小值
    Arrays.fill(probTo, -1);
    // base case,start 到 start 的概率就是 1
    probTo[start] = 1;

    // 优先级队列,probFromStart 较大的排在前面
    Queue<State> pq = new PriorityQueue<>((a, b) -> {
        return Double.compare(b.probFromStart, a.probFromStart);
    });
    // 从起点 start 开始进行 BFS
    pq.offer(new State(start, 1));

    while (!pq.isEmpty()) {
        State curState = pq.poll();
        int curNodeID = curState.id;
        double curProbFromStart = curState.probFromStart;

        // 遇到终点提前返回
        if (curNodeID == end) {
            return curProbFromStart;
        }
        
        if (curProbFromStart < probTo[curNodeID]) {
            // 已经有一条概率更大的路径到达 curNode 节点了
            continue;
        }
        // 将 curNode 的相邻节点装入队列
        for (double[] neighbor : graph[curNodeID]) {
            int nextNodeID = (int)neighbor[0];
            // 看看从 curNode 达到 nextNode 的概率是否会更大
            double probToNextNode = probTo[curNodeID] * neighbor[1];
            if (probTo[nextNodeID] < probToNextNode) {
                probTo[nextNodeID] = probToNextNode;
                pq.offer(new State(nextNodeID, probToNextNode));
            }
        }
    }
    // 如果到达这里,说明从 start 开始无法到达 end,返回 0
    return 0.0;
}

好了,到这里本文就结束了,总共 6000 多字,这三道例题都是比较困难的,如果你能够看到这里,真得给你鼓掌。

最后还是那句话,做题在质不在量,希望大家能够透彻理解最基本的数据结构,以不变应万变。

首先关于有向图和无向图,前文 说过,无向图本质上可以认为是「双向图」,从而转化成有向图。

其实前文 中讲过限制之下的最小路径问题,当时是使用动态规划思路解决的,但文末也给了 Dijkstra 算法代码,仅仅在本文模板的基础上做了一些变换,你理解本文后可以对照着去看看那道题目。

图算法基础
毕业旅行省钱算法