72. Edit Distance (H)
https://leetcode.com/problems/edit-distance/
Given two strings word1
and word2
, return the minimum number of operations required to convert word1
to word2
.
You have the following three operations permitted on a word:
Insert a character
Delete a character
Replace a character
Example 1:
Example 2:
Constraints:
0 <= word1.length, word2.length <= 500
word1
andword2
consist of lowercase English letters.
Solution:
本文有视频版: 编辑距离详解动态规划
前几天看了一份鹅厂的面试题,算法部分大半是动态规划,最后一题就是写一个计算编辑距离的函数,今天就专门写一篇文章来探讨一下这个问题。
我个人很喜欢编辑距离这个问题,因为它看起来十分困难,解法却出奇得简单漂亮,而且它是少有的比较实用的算法(是的,我承认很多算法问题都不太实用)。下面先来看下题目:
为什么说这个问题难呢,因为显而易见,它就是难,让人手足无措,望而生畏。
为什么说它实用呢,因为前几天我就在日常生活中用到了这个算法。之前有一篇公众号文章由于疏忽,写错位了一段内容,我决定修改这部分内容让逻辑通顺。但是公众号文章最多只能修改 20 个字,且只支持增、删、替换操作(跟编辑距离问题一模一样),于是我就用算法求出了一个最优方案,只用了 16 步就完成了修改。
再比如高大上一点的应用,DNA 序列是由 A,G,C,T 组成的序列,可以类比成字符串。编辑距离可以衡量两个 DNA 序列的相似度,编辑距离越小,说明这两段 DNA 越相似,说不定这俩 DNA 的主人是远古近亲啥的。
下面言归正传,详细讲解一下编辑距离该怎么算,相信本文会让你有收获。
一、思路
编辑距离问题就是给我们两个字符串 s1
和 s2
,只能用三种操作,让我们把 s1
变成 s2
,求最少的操作数。需要明确的是,不管是把 s1
变成 s2
还是反过来,结果都是一样的,所以后文就以 s1
变成 s2
举例。
前文 最长公共子序列 说过,解决两个字符串的动态规划问题,一般都是用两个指针 i,j
分别指向两个字符串的最后,然后一步步往前走,缩小问题的规模。
设两个字符串分别为 "rad"
和 "apple"
,为了把 s1
变成 s2
,算法会这样进行:
请记住这个 GIF 过程,这样就能算出编辑距离。关键在于如何做出正确的操作,稍后会讲。
根据上面的 GIF,可以发现操作不只有三个,其实还有第四个操作,就是什么都不要做(skip)。比如这个情况:
因为这两个字符本来就相同,为了使编辑距离最小,显然不应该对它们有任何操作,直接往前移动 i,j
即可。
还有一个很容易处理的情况,就是 j
走完 s2
时,如果 i
还没走完 s1
,那么只能用删除操作把 s1
缩短为 s2
。比如这个情况:
类似的,如果 i
走完 s1
时 j
还没走完了 s2
,那就只能用插入操作把 s2
剩下的字符全部插入 s1
。等会会看到,这两种情况就是算法的 base case。
下面详解一下如何将思路转换成代码,坐稳,要发车了。
二、代码详解
先梳理一下之前的思路:
base case 是 i
走完 s1
或 j
走完 s2
,可以直接返回另一个字符串剩下的长度。
对于每对儿字符 s1[i]
和 s2[j]
,可以有四种操作:
有这个框架,问题就已经解决了。读者也许会问,这个「三选一」到底该怎么选择呢?很简单,全试一遍,哪个操作最后得到的编辑距离最小,就选谁。这里需要递归技巧,理解需要点技巧,先看下代码:
下面来详细解释一下这段递归代码,base case 应该不用解释了,主要解释一下递归部分。
都说递归代码的可解释性很好,这是有道理的,只要理解函数的定义,就能很清楚地理解算法的逻辑。我们这里 dp(i, j)
函数的定义是这样的:
记住这个定义之后,先来看这段代码:
如果 s1[i]!=s2[j]
,就要对三个操作递归了,稍微需要点思考:
现在,你应该完全理解这段短小精悍的代码了。还有点小问题就是,这个解法是暴力解法,存在重叠子问题,需要用动态规划技巧来优化。
怎么能一眼看出存在重叠子问题呢?前文 动态规划之正则表达式 有提过,这里再简单提一下,需要抽象出本文算法的递归框架:
对于子问题 dp(i-1, j-1)
,如何通过原问题 dp(i, j)
得到呢?有不止一条路径,比如 dp(i, j) -> #1
和 dp(i, j) -> #2 -> #3
。一旦发现一条重复路径,就说明存在巨量重复路径,也就是重叠子问题。
三、动态规划优化
对于重叠子问题呢,前文 动态规划详解 详细介绍过,优化方法无非是备忘录或者 DP table。
备忘录很好加,原来的代码稍加修改即可:
主要说下 DP table 的解法:
首先明确 dp 数组的含义,dp 数组是一个二维数组,长这样:
有了之前递归解法的铺垫,应该很容易理解。dp[..][0]
和 dp[0][..]
对应 base case,dp[i][j]
的含义和之前的 dp 函数类似:
dp 函数的 base case 是 i, j
等于 -1,而数组索引至少是 0,所以 dp 数组会偏移一位。
既然 dp 数组和递归 dp 函数含义一样,也就可以直接套用之前的思路写代码,唯一不同的是,DP table 是自底向上求解,递归解法是自顶向下求解:
三、扩展延伸
一般来说,处理两个字符串的动态规划问题,都是按本文的思路处理,建立 DP table。为什么呢,因为易于找出状态转移的关系,比如编辑距离的 DP table:
还有一个细节,既然每个 dp[i][j]
只和它附近的三个状态有关,空间复杂度是可以压缩成 O(min(M, N))
的(M,N 是两个字符串的长度)。不难,但是可解释性大大降低,读者可以自己尝试优化一下。
你可能还会问,这里只求出了最小的编辑距离,那具体的操作是什么?你之前举的修改公众号文章的例子,只有一个最小编辑距离肯定不够,还得知道具体怎么修改才行。
这个其实很简单,代码稍加修改,给 dp 数组增加额外的信息即可:
val
属性就是之前的 dp 数组的数值,choice
属性代表操作。在做最优选择时,顺便把操作记录下来,然后就从结果反推具体操作。
我们的最终结果不是 dp[m][n]
吗,这里的 val
存着最小编辑距离,choice
存着最后一个操作,比如说是插入操作,那么就可以左移一格:
重复此过程,可以一步步回到起点 dp[0][0]
,形成一条路径,按这条路径上的操作进行编辑,就是最佳方案。
_____________
Last updated