106. Construct Binary Tree from Inorder and Postorder Traversal (M)

https://leetcode.com/problems/construct-binary-tree-from-inorder-and-postorder-traversal/

Given two integer arrays inorder and postorder where inorder is the inorder traversal of a binary tree and postorder is the postorder traversal of the same tree, construct and return the binary tree.

Example 1:

Input: inorder = [9,3,15,20,7], postorder = [9,15,7,20,3]
Output: [3,9,20,null,null,15,7]

Example 2:

Input: inorder = [-1], postorder = [-1]
Output: [-1]

Constraints:

  • 1 <= inorder.length <= 3000

  • postorder.length == inorder.length

  • -3000 <= inorder[i], postorder[i] <= 3000

  • inorder and postorder consist of unique values.

  • Each value of postorder also appears in inorder.

  • inorder is guaranteed to be the inorder traversal of the tree.

  • postorder is guaranteed to be the postorder traversal of the tree.

Solution:

Very similar to LeetCode 105,

这样的遍历顺序差异,导致了 preorderinorder 数组中的元素分布有如下特点:

这道题和上一题的关键区别是,后序遍历和前序遍历相反,根节点对应的值为 postorder 的最后一个元素。

整体的算法框架和上一题非常类似,我们依然写一个辅助函数 build

TreeNode buildTree(int[] inorder, int[] postorder) {
    return build(inorder, 0, inorder.length - 1,
                 postorder, 0, postorder.length - 1);
}

TreeNode build(int[] inorder, int inStart, int inEnd,
               int[] postorder, int postStart, int postEnd) {
    // root 节点对应的值就是后序遍历数组的最后一个元素
    int rootVal = postorder[postEnd];
    // rootVal 在中序遍历数组中的索引
    int index = 0;
    for (int i = inStart; i <= inEnd; i++) {
        if (inorder[i] == rootVal) {
            index = i;
            break;
        }
    }

    TreeNode root = new TreeNode(rootVal);
    // 递归构造左右子树
    root.left = build(preorder, ?, ?,
                      inorder, ?, ?);

    root.right = build(preorder, ?, ?,
                       inorder, ?, ?);
    return root;
}

现在 postoderinorder 对应的状态如下:

我们可以按照上图将问号处的索引正确填入:

int leftSize = index - inStart;

root.left = build(inorder, inStart, index - 1,
                  postorder, postStart, postStart + leftSize - 1);

root.right = build(inorder, index + 1, inEnd,
                   postorder, postStart + leftSize, postEnd - 1);

综上,可以写出完整的解法代码:

TreeNode build(int[] inorder, int inStart, int inEnd,
               int[] postorder, int postStart, int postEnd) {

    if (inStart > inEnd) {
        return null;
    }
    // root 节点对应的值就是后序遍历数组的最后一个元素
    int rootVal = postorder[postEnd];
    // rootVal 在中序遍历数组中的索引
    int index = 0;
    for (int i = inStart; i <= inEnd; i++) {
        if (inorder[i] == rootVal) {
            index = i;
            break;
        }
    }
    // 左子树的节点个数
    int leftSize = index - inStart;
    TreeNode root = new TreeNode(rootVal);
    // 递归构造左右子树
    root.left = build(inorder, inStart, index - 1,
                        postorder, postStart, postStart + leftSize - 1);
    
    root.right = build(inorder, index + 1, inEnd,
                        postorder, postStart + leftSize, postEnd - 1);
    return root;
}

有了前一题的铺垫,这道题很快就解决了,无非就是 rootVal 变成了最后一个元素,再改改递归函数的参数而已,只要明白二叉树的特性,也不难写出来。

最后呼应下前文,做二叉树的问题,关键是把题目的要求细化,搞清楚根节点应该做什么,然后剩下的事情抛给前/中/后序的遍历框架就行了

Last updated

Was this helpful?