1567. Maximum Length of Subarray With Positive Product (M)
Given an array of integers nums, find the maximum length of a subarray where the product of all its elements is positive.
A subarray of an array is a consecutive sequence of zero or more values taken out of that array.
Return the maximum length of a subarray with positive product.
Example 1:
Input: nums = [1,-2,-3,4]
Output: 4
Explanation: The array nums already has a positive product of 24.
Example 2:
Input: nums = [0,1,-2,-3,-4]
Output: 3
Explanation: The longest subarray with positive product is [1,-2,-3] which has a product of 6.
Notice that we cannot include 0 in the subarray since that'll make the product 0 which is not positive.
Example 3:
Input: nums = [-1,-2,-3,0,1]
Output: 2
Explanation: The longest subarray with positive product is [-1,-2] or [-2,-3].
Constraints:
1 <= nums.length <= 105
-109 <= nums[i] <= 109
Solution:
Version 1: DP
p[i] := max length of positive products ends with arr[i]
n[i] := max length of negtive products ends with arr[i]
if arr[i] > 0: p[i] = p[i – 1] + 1, n[i] = n[i] + 1 if n[i] else 0
if arr[i] < 0: p[i] = n[i – 1] + 1 if n[i – 1] else 0, n[i] = p[i – 1] + 1
if arr[i] == 0: p[i] = n[i] = 0
ans = max(p[i])
Time complexity: O(n)
Space complexity: O(n) -> O(1)