单调栈
https://labuladong.github.io/algo/2/20/50/
Last updated
https://labuladong.github.io/algo/2/20/50/
Last updated
栈(stack)是很简单的一种数据结构,先进后出的逻辑顺序,符合某些问题的特点,比如说函数调用栈。
单调栈实际上就是栈,只是利用了一些巧妙的逻辑,使得每次新元素入栈后,栈内的元素都保持有序(单调递增或单调递减)。
听起来有点像堆(heap)?不是的,单调栈用途不太广泛,只处理一种典型的问题,叫做 Next Greater Element。本文用讲解单调队列的算法模版解决这类问题,并且探讨处理「循环数组」的策略。
现在给你出这么一道题:
给你一个数组 nums
,请你返回一个等长的结果数组,结果数组中对应索引存储着下一个更大元素,如果没有更大的元素,就存 -1。
函数签名如下:
比如说,输入一个数组 nums = [2,1,2,4,3]
,你返回数组 [4,2,4,-1,-1]
。
解释:第一个 2 后面比 2 大的数是 4; 1 后面比 1 大的数是 2;第二个 2 后面比 2 大的数是 4; 4 后面没有比 4 大的数,填 -1;3 后面没有比 3 大的数,填 -1。
这道题的暴力解法很好想到,就是对每个元素后面都进行扫描,找到第一个更大的元素就行了。但是暴力解法的时间复杂度是 O(n^2)
。
这个问题可以这样抽象思考:把数组的元素想象成并列站立的人,元素大小想象成人的身高。这些人面对你站成一列,如何求元素「2」的 Next Greater Number 呢?
很简单,如果能够看到元素「2」,那么他后面可见的第一个人就是「2」的 Next Greater Number,因为比「2」小的元素身高不够,都被「2」挡住了,第一个露出来的就是答案。
这个情景很好理解吧?带着这个抽象的情景,先来看下代码。
这就是单调队列解决问题的模板。for 循环要从后往前扫描元素,因为我们借助的是栈的结构,倒着入栈,其实是正着出栈。while 循环是把两个「个子高」元素之间的元素排除,因为他们的存在没有意义,前面挡着个「更高」的元素,所以他们不可能被作为后续进来的元素的 Next Great Number 了。
这个算法的时间复杂度不是那么直观,如果你看到 for 循环嵌套 while 循环,可能认为这个算法的复杂度也是 O(n^2)
,但是实际上这个算法的复杂度只有 O(n)
。
分析它的时间复杂度,要从整体来看:总共有 n
个元素,每个元素都被 push
入栈了一次,而最多会被 pop
一次,没有任何冗余操作。所以总的计算规模是和元素规模 n
成正比的,也就是 O(n)
的复杂度。
LeetCode 496,503, 739