48. Rotate Image (M)

https://leetcode.com/problems/rotate-image/

You are given an n x n 2D matrix representing an image, rotate the image by 90 degrees (clockwise).

You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOT allocate another 2D matrix and do the rotation.

Example 1:

Input: matrix = [[1,2,3],[4,5,6],[7,8,9]]
Output: [[7,4,1],[8,5,2],[9,6,3]]

Example 2:

Input: matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
Output: [[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]

Constraints:

  • n == matrix.length == matrix[i].length

  • 1 <= n <= 20

  • -1000 <= matrix[i][j] <= 1000

Solution:

题目很好理解,就是让你将一个二维矩阵顺时针旋转 90 度,难点在于要「原地」修改,函数签名如下:

void rotate(int[][] matrix)

如何「原地」旋转二维矩阵?稍想一下,感觉操作起来非常复杂,可能要设置巧妙的算法机制来「一圈一圈」旋转矩阵:

但实际上,这道题不能走寻常路,在讲巧妙解法之前,我们先看另一道谷歌曾经考过的算法题热热身:

给你一个包含若干单词和空格的字符串 s,请你写一个算法,原地反转所有单词的顺序。

比如说,给你输入这样一个字符串:

s = "hello world labuladong"

你的算法需要原地反转这个字符串中的单词顺序:

s = "labuladong world hello"

常规的方式是把 s 按空格 split 成若干单词,然后 reverse 这些单词的顺序,最后把这些单词 join 成句子。但这种方式使用了额外的空间,并不是「原地反转」单词。

正确的做法是,先将整个字符串 s 反转

s = "gnodalubal dlrow olleh"

然后将每个单词分别反转

s = "labuladong world hello"

这样,就实现了原地反转所有单词顺序的目的。

我讲这道题的目的是什么呢?

旨在说明,有时候咱们拍脑袋的常规思维,在计算机看来可能并不是最优雅的;但是计算机觉得最优雅的思维,对咱们来说却不那么直观。也许这就是算法的魅力所在吧。

回到之前说的顺时针旋转二维矩阵的问题,常规的思路就是去寻找原始坐标和旋转后坐标的映射规律,但我们是否可以让思维跳跃跳跃,尝试把矩阵进行反转、镜像对称等操作,可能会出现新的突破口。

我们可以先将 n x n 矩阵 matrix 按照左上到右下的对角线进行镜像对称

然后再对矩阵的每一行进行反转

发现结果就是 matrix 顺时针旋转 90 度的结果

将上述思路翻译成代码,即可解决本题:

// 将二维矩阵原地顺时针旋转 90 度
public void rotate(int[][] matrix) {
    int n = matrix.length;
    // 先沿对角线镜像对称二维矩阵
    for (int i = 0; i < n; i++) {
        for (int j = i; j < n; j++) {
            // swap(matrix[i][j], matrix[j][i]);
            int temp = matrix[i][j];
            matrix[i][j] = matrix[j][i];
            matrix[j][i] = temp;
        }
    }
    // 然后反转二维矩阵的每一行
    for (int[] row : matrix) {
        reverse(row);
    }
}

// 反转一维数组
void reverse(int[] arr) {
    int i = 0, j = arr.length - 1;
    while (j > i) {
        // swap(arr[i], arr[j]);
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
        i++;
        j--;
    }
}

肯定有读者会问,如果没有做过这道题,怎么可能想到这种思路呢?

其实我觉得这个思路还是挺容易想出来的,如果学过线性代数,这道算法题的思路本质就是矩阵变换,肯定可以想出来。

即便没学过线性代数,旋转二维矩阵的难点在于将「行」变成「列」,将「列」变成「行」,而只有按照对角线的对称操作是可以轻松完成这一点的,对称操作之后就很容易发现规律了。

既然说道这里,我们可以发散一下,如何将矩阵逆时针旋转 90 度呢

思路是类似的,只要通过另一条对角线镜像对称矩阵,然后再反转每一行,就得到了逆时针旋转矩阵的结果:

翻译成代码如下:

// 将二维矩阵原地逆时针旋转 90 度
void rotate2(int[][] matrix) {
    int n = matrix.length;
    // 沿左下到右上的对角线镜像对称二维矩阵
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n - i; j++) {
            // swap(matrix[i][j], matrix[n-j-1][n-i-1])
            int temp = matrix[i][j];
            matrix[i][j] = matrix[n - j - 1][n - i - 1];
            matrix[n - j - 1][n - i - 1] = temp;
        }
    }
    // 然后反转二维矩阵的每一行
    for (int[] row : matrix) {
        reverse(row);
    }
}

void reverse(int[] arr) { /* 见上文 */}

至此,旋转矩阵的问题就解决了。

Last updated

Was this helpful?