Nine Chapter
  • Introduction
    • Summary
  • 1.Binary Search
    • Introduction
    • 458.Last position of target
    • 600.Smallest Rectangle Enclosing Black Pixels
    • 585.Maximum Number in Mountain Sequence
    • 183.Wood Cut
    • 62.Search in Rotated Sorted Array
    • 63.Search in Rotated Sorted Array II
    • 159.Find Minimum in Rotated Sorted Array
    • 160.Find Minimum in Rotated Sorted Array II
    • 75.Find Peak Element
    • 60.Search Insert Position
    • 28.Search a 2D Matrix
    • 240. Search a 2D Matrix II
    • 14.First Position of Target
    • 74.First Bad Version
    • 875. Koko Eating Bananas
    • 1011. Capacity To Ship Packages Within D Days (M)
    • 410. Split Array Largest Sum (H)
    • 475. Heaters (M)
    • 1044. Longest Duplicate Substring (H)
  • 2.Binary Tree
    • Summary
      • 二叉树八股文:递归改迭代
      • BST
      • Frame
    • 66.Binary Tree Preorder Traversal
    • 67.🌟Binary Tree Inorder Traversal
    • 145. Binary Tree Postorder Traversal (E)
    • 98.Validate Binary Search Tree(M)
    • 85.Insert Node in a Binary Search Tree
    • 104. Maximum Depth of Binary Tree(E)
    • 235. Lowest Common Ancestor of a Binary Search Tree (E)
    • 236.Lowest Common Ancestor of Binary Tree(M)
    • 578.Lowest Common Ancestor III
    • 1120.Subtree with Maximum Average
    • 596.Minimum Subtree
    • 480.Binary Tree Paths
    • 453.Flatten Binary Tree to Linked List
    • 110.Balanced Binary Tree
    • 376.Binary Tree Path Sum
    • 246.Binary Tree Path Sum II
    • 475.Binary Tree Maximum Path Sum II
    • 124.Binary Tree Maximum Path Sum (H)
    • Path Sum (*)
      • 112. Path Sum
      • 113. Path Sum II
      • 437. Path Sum III
    • 177.Convert Sorted Array to Binary Search Tree With Minimal Height
    • 7.Binary Tree Serialization
    • 72,73.Construct Binary Tree
    • Binary Search Tree Path
    • 245.Subtree
    • 469.Identical Binary Tree
    • 87.Remove Node in Binary Search Tree
    • 116.Populating Next Right Pointers in Each Node (M)
    • 114. Flatten Binary Tree to Linked List(M)
    • 654.Maximum Binary Tree (M)
    • 105. 🌟Construct Binary Tree from Preorder and Inorder Traversal (M)
    • 106. Construct Binary Tree from Inorder and Postorder Traversal (M)
    • 652. Find Duplicate Subtrees(M)
    • 230. Kth Smallest Element in a BST (M)
    • 538&1038. Convert BST to Greater Tree
    • 450. Delete Node in a BST (M)
    • 701. Insert into a Binary Search Tree (M)
    • 96. Unique Binary Search Trees
    • 95. Unique Binary Search Trees II (M)
    • 1373. Maximum Sum BST in Binary Tree (H)
    • 297. Serialize and Deserialize Binary Tree (H)
    • 222. Count Complete Tree Nodes (M)
    • 1120. Maximum Average Subtree
    • 341. Flatten Nested List Iterator
    • 333. Largest BST Subtree (M)
    • 543. Diameter of Binary Tree
    • Binary Tree Longest Consecutive Sequence(*)
      • 298.Binary Tree Longest Consecutive Sequence
      • 549. Binary Tree Longest Consecutive Sequence II (M)
  • 3.Breadth First Search
    • Introduction
      • BFS 算法解题套路框架
      • 双向 BFS 优化
    • 102.Binary Tree Level Order Traversal (M)
    • 103. Binary Tree Zigzag Level Order Traversal (M)
    • 107.Binary Tree Level Order Traversal II(M)
    • 618.Search Graph Nodes
    • 207.Course Schedule (M)
    • 210.Course Schedule II (M)
    • 611.Knight Shortest Path
    • 598.Zombie in Matrix
    • 133.Clone Graph (M)
    • 178.Graph Valid Tree
    • 7.Binary Tree Serialization
    • 574.Build Post Office
    • 573.Build Post Office II
    • 127.Topological Sorting
    • 127.Word Ladder
    • 126. Word Ladder II
    • (LeetCode)515.Find Largest Value in Each Tree Row
    • 111. Minimum Depth of Binary Tree (E)
    • 752. Open the Lock
    • 542. 01 Matrix (M)
    • 1306. Jump Game III (M)
  • 4.Depth First Search+BackTracking
    • Summary
      • FloodFill 算法
    • 136.Palindrome Partitioning
    • 39.Combination Sum
    • 40.Combination Sum II
    • 377. Combination Sum IV
    • 77.Combinations (M)
    • 78.Subsets (M)
    • 90.Subsets II (M)
    • 46.🌟Permutations
    • 47.Permutations II
    • 582.Word Break II
    • 490.The Maze (M)
    • 51.N-Queens (H)
    • 52. N-Queens II (H)
    • 698. Partition to K Equal Sum Subsets (M)
    • 22. Generate Parentheses (M)
    • 岛屿问题
      • 200.Number of Islands (M)
      • 1254. Number of Closed Islands (M)
      • 1020. Number of Enclaves (M)
      • 695. Max Area of Island (M)
      • 1905. Count Sub Islands (M)
      • 694. Number of Distinct Islands
    • 131. Palindrome Partitioning (M)
    • 967. Numbers With Same Consecutive Differences (M)
    • 79. Word Search (M)
    • 212. Word Search II (M)
    • 472. Concatenated Words (H)
    • Page 2
    • 291. Word Pattern II
    • 17. Letter Combinations of a Phone Number (M)
  • 5.LinkedList
    • Summary
      • 单链表的倒数第 k 个节点
      • Merge two/k sorted LinkedList
      • Middle of the Linked List
      • 判断链表是否包含环
      • 两个链表是否相交 Intersection of Two Linked Lists
      • 递归反转链表
      • 如何判断回文链表
    • 599.Insert into a Cyclic Sorted List
    • 21.Merge Two Sorted Lists (E)
    • 23.Merge k Sorted Lists (H)
    • 105.Copy List with Random Pointer
    • 141.Linked List Cycle (E)
    • 142.Linked List Cycle II (M)
    • 148.Sort List (M)
    • 86.Partition List (M)
    • 83.Remove Duplicates from Sorted List(E)
    • 82.Remove Duplicates from Sorted List II (M)
    • 206.Reverse Linked List (E)
    • 92.Reverse Linked List II (M)
    • 143.Reorder List (M)
    • 19.Remove Nth Node From End of List (E)
    • 170.Rotate List
    • 🤔25.Reverse Nodes in k-Group (H)
    • 452.Remove Linked List Elements
    • 167.Add Two Numbers
    • 221.Add Two Numbers II
    • 876. Middle of the Linked List (E)
    • 160. Intersection of Two Linked Lists (E)
    • 234. Palindrome Linked List (E)
    • 2130. Maximum Twin Sum of a Linked List (M)
  • 6.Array
    • Summary
      • 前缀和思路PrefixSum
      • 差分数组 Difference Array
      • 双指针Two Pointers
      • 滑动窗口算法算法
      • Sliding windows II
      • 二分搜索Binary Search
      • 排序算法
      • 快速选择算法
    • 604.Window Sum
    • 138.Subarray Sum
    • 41.Maximum Subarray
    • 42.Maximum Subarray II
    • 43.Maximum Subarray III
    • 620.Maximum Subarray IV
    • 621.Maximum Subarray V
    • 6.Merge Two Sorted Arrays
    • 88.Merge Sorted Array
    • 547.Intersection of Two Arrays
    • 548.Intersection of Two Arrays II
    • 139.Subarray Sum Closest
    • 65.Median of two Sorted Arrays
    • 636.132 Pattern
    • 402.Continuous Subarray Sum
    • 303. Range Sum Query - Immutable (E)
    • 304.Range Sum Query 2D - Immutable (M)
    • 560. Subarray Sum Equals K (M)
    • 370. Range Addition(M)
    • 1109. Corporate Flight Bookings(M)
    • 1094. Car Pooling (M)
    • 76. Minimum Window Substring(H)
    • 567. Permutation in String (M)
    • 438. Find All Anagrams in a String(M)
    • 3. Longest Substring Without Repeating Characters (M)
    • 380. Insert Delete GetRandom O(1) (M)
    • 710. Random Pick with Blacklist (H)
    • 528. Random Pick with Weight (M)
    • 26. Remove Duplicates from Sorted Array (E)
    • 27. Remove Element (E)
    • 283. Move Zeroes (E)
    • 659. Split Array into Consecutive Subsequences (M)
    • 4. Median of Two Sorted Arrays (H)
    • 48. Rotate Image (M)
    • 54. Spiral Matrix (M)
    • 59. Spiral Matrix II (M)
    • 918. Maximum Sum Circular Subarray
    • 128. Longest Consecutive Sequence (M)
    • 238. Product of Array Except Self (M)
    • 1438. Longest Continuous Subarray With Absolute Diff Less Than or Equal to Limit (M)
    • 1151. Minimum Swaps to Group All 1's Together (M)
    • 2134. Minimum Swaps to Group All 1's Together II
    • 2133. Check if Every Row and Column Contains All Numbers
    • 632. Smallest Range Covering Elements from K Lists (H)
    • 36. Valid Sudoku (M)
    • 383. Ransom Note
    • 228. Summary Ranges
  • 7.Two pointers
    • Summary
      • Two Sum
      • 2Sum 3Sum 4Sum 问题
    • 1.Two Sum I
    • 170.Two Sum III - Data structure design
    • 167.Two Sum II- Input array is sorted
    • 609.Two Sum - Less than or equal to target
    • 610.Two Sum - Difference equals to targe
    • 587.Two Sum - Unique pairs
    • 533.Two Sum - Closest to target
    • 443.Two Sum - Greater than target
    • 653. Two Sum IV - Input is a BST (M)
    • 57.3Sum
    • 59.3Sum Closest
    • 58.4Sum
    • 148.Sort Colors
    • 143.Sort Colors II
    • 31.Partition Array
    • 625.Partition Array II
    • 382.Triangle Count
      • 611. Valid Triangle Number
    • 521.Remove Duplicate Numbers in Array
    • 167. Two Sum II - Input Array Is Sorted (E)
    • 870. Advantage Shuffle (M)
    • 9. Palindrome Number (E)
    • 125. Valid Palindrome(E)
    • 5. Longest Palindromic Substring (M)
    • 42. Trapping Rain Water
    • 11. Container With Most Water (M)
    • 658. Find K Closest Elements (M)
    • 392. Is Subsequence
  • 8.Data Structure
    • Summary
      • 数据结构的存储方式
      • 单调栈
      • 单调队列
      • 二叉堆 Binary Heap
      • TreeMap
      • TreeSet
      • 🌟Trie
      • Trie Application
    • 155. Min Stack (E)
    • 716. Max Stack (E)
    • 1648. Sell Diminishing-Valued Colored Balls
    • 232. Implement Queue using Stacks (E)
    • 225. Implement Stack using Queues(E)
    • 84.Largest Rectangle in Histogram
    • 128.Hash Function
    • Max Tree
    • 544.Top k Largest Numbers
    • 545.Top k Largest Numbers II
    • 613.High Five
    • 606.Kth Largest Element II
    • 5.Kth Largest Element
    • 129.Rehashing
    • 4.Ugly Number II
    • 517.Ugly Number
    • 28. Implement strStr()
    • 594.strStr II
    • 146.LRU Cache
    • 460.LFU Cache
    • 486.Merge k Sorted Arrays
    • 130.Heapify
    • 215. Kth Largest Element in an Array (M)
    • 612.K Closest Points
    • 692. Top K Frequent Words
    • 347.Top K Frequent Elements
    • 601.Flatten 2D Vector
    • 540.Zigzag Iterator
    • 541.Zigzag Iterator II
    • 423.Valid Parentheses
    • 488.Happy Number
    • 547.Intersection of Two Arrays
    • 548.Intersection of Two Arrays II
    • 627.Longest Palindrome
    • 638.Strings Homomorphism
    • 138.Subarray Sum
    • 647.Substring Anagrams
    • 171.Anagrams
    • 739. Daily Temperatures(M)
    • 496. Next Greater Element I (E)
    • 503. Next Greater Element II(M)
    • 316. Remove Duplicate Letters(M) & 1081. Smallest Subsequence of Distinct Characters
    • 239. Sliding Window Maximum (H)
    • 355. Design Twitter (M)
    • 895. Maximum Frequency Stack (H)
    • 20. Valid Parentheses (E)
    • 921. Minimum Add to Make Parentheses Valid (M)
    • 1541. Minimum Insertions to Balance a Parentheses String (M)
    • 32. Longest Valid Parentheses (H)
    • Basic Calculator (*)
      • 224. Basic Calculator
      • 227. Basic Calculator II (M)
    • 844. Backspace String Compare
    • 295. Find Median from Data Stream
    • 208. Implement Trie (Prefix Tree)
    • 461.Kth Smallest Numbers in Unsorted Array
    • 1152.Analyze user website visit pattern
    • 811. Subdomain Visit Count (M)
    • 71. Simplify Path (M)
    • 362. Design Hit Counter
  • 9.Dynamic Programming
    • Summary
      • 最优子结构 Optimal Sustructure
      • 子序列解题模板
      • 空间压缩
      • 背包问题
        • Untitled
      • 股票买卖问题
      • KMP
    • 109.Triangle
    • 110.Minimum Path Sum
    • 114.Unique Paths
    • 115.Unique Paths II
    • 70.Climbing Stairs
    • 272.Climbing StairsII
    • 116.Jump Game
    • 117.Jump Game II
    • 322.Coin Change
    • 518. Coin Change 2 ()
    • Backpack I~VI
      • LintCode 563.Backpack V (M)
    • Best Time to Buy and Sell Stock(*)
      • 121. Best Time to Buy and Sell Stock
      • 122. Best Time to Buy and Sell Stock II (M)
      • 123. Best Time to Buy and Sell Stock III (H)
      • 188. Best Time to Buy and Sell Stock IV (H)
      • 309. Best Time to Buy and Sell Stock with Cooldown (M)
      • 714. Best Time to Buy and Sell Stock with Transaction Fee (M)
    • 394.Coins in a line
    • 395.Coins in a Line II
    • 509. Fibonacci Number (E)
    • 931. Minimum Falling Path Sum (M)
    • 494. Target Sum (M)
    • 72. Edit Distance (H)
    • 300.Longest Increasing Subsequence
    • 1143. Longest Common Subsequence (M)
    • 718. Maximum Length of Repeated Subarray
    • 583. Delete Operation for Two Strings (M)
    • 712. Minimum ASCII Delete Sum for Two Strings(M)
    • 53. Maximum Subarray (E)
    • 516. Longest Palindromic Subsequence (M)
    • 1312. Minimum Insertion Steps to Make a String Palindrome (H)
    • 416. Partition Equal Subset Sum (M)
    • 64. Minimum Path Sum(M)
    • 651. 4 Keys Keyboards (M)
    • House Robber (*)
      • 198. House Robber (M)
      • 213. House Robbber II
      • 337. House Robber III (M)
    • Word Break (*)
      • 139.Word Break (M)
    • 140. Word Break II (H)
    • 828. Count Unique Characters of All Substrings of a Given String (H)
    • 174. Dungeon Game (H)
    • 1567. Maximum Length of Subarray With Positive Product (M)
  • 10. Graph
    • Introduction
      • 有向图的环检测
      • 拓扑排序
      • 二分图判定
      • Union-Find
      • 最小生成树(Minimum Spanning Tree)算法
        • KRUSKAL 最小生成树算法
        • Prim 最小生成树算法
      • Dijkstra 最短路径算法
      • BFS vs DFS
    • 797. All Paths From Source to Target (M)
    • 785. Is Graph Bipartite? (M)
    • 886. Possible Bipartition (M)
    • 130. Surrounded Regions (M)
    • 990. Satisfiability of Equality Equations (M)
    • 721. Accounts Merge (M)
    • 323. Number of Connected Components in an Undirected Graph (M)
    • 261. Graph Valid Tree
    • 1135. Connecting Cities With Minimum Cost
    • 1584. Min Cost to Connect All Points (M)
    • 277. Find the Celebrity (M)
    • 743. Network Delay Time (M)
    • 1631. Path With Minimum Effort (M)
    • 1514. Path with Maximum Probability (M)
    • 589.Connecting Graph
    • 🌟787. Cheapest Flights Within K Stops (M)
    • 2050. Parallel Courses III (H)
    • 1293. Shortest Path in a Grid with Obstacles Elimination (H)
    • 864. Shortest Path to Get All Keys (H)
    • 269. Alien Dictionary (H)
    • 1192. Critical Connections in a Network (H)
    • 529. Minesweeper (M)
  • 11.Math
    • Page 1
Powered by GitBook
On this page

Was this helpful?

  1. 10. Graph

🌟787. Cheapest Flights Within K Stops (M)

https://leetcode.com/problems/cheapest-flights-within-k-stops/

Previous589.Connecting GraphNext2050. Parallel Courses III (H)

Last updated 3 years ago

Was this helpful?

There are n cities connected by some number of flights. You are given an array flights where flights[i] = [fromi, toi, pricei] indicates that there is a flight from city fromi to city toi with cost pricei.

You are also given three integers src, dst, and k, return the cheapest price from src to dst with at most k stops. If there is no such route, return -1.

Example 1:

Input: n = 3, flights = [[0,1,100],[1,2,100],[0,2,500]], src = 0, dst = 2, k = 1
Output: 200
Explanation: The graph is shown.
The cheapest price from city 0 to city 2 with at most 1 stop costs 200, as marked red in the picture.

Example 2:

Input: n = 3, flights = [[0,1,100],[1,2,100],[0,2,500]], src = 0, dst = 2, k = 0
Output: 500
Explanation: The graph is shown.
The cheapest price from city 0 to city 2 with at most 0 stop costs 500, as marked blue in the picture.

Constraints:

  • 1 <= n <= 100

  • 0 <= flights.length <= (n * (n - 1) / 2)

  • flights[i].length == 3

  • 0 <= fromi, toi < n

  • fromi != toi

  • 1 <= pricei <= 104

  • There will not be any multiple flights between two cities.

  • 0 <= src, dst, k < n

  • src != dst

Solution:

本题目有三种解法: 1.BFS+Dijkstra 2.自顶向下的DFS 3.自底向上的DP

Version 1: Dijkstra

因为 BFS 算法相当于从起始点开始,一步一步向外扩散,那当然是离起点越近的节点越先被遍历到,如果 BFS 遍历的过程中遇到终点,那么走的肯定是最短路径。

为什么呢?也好理解,在多叉树(或者扩展到无权图)的遍历中,与其说边没有权重,不如说每条边的权重都是 1,起点与终点之间的路径权重就是它们之间「边」的条数。

这样,按照 BFS 算法一步步向四周扩散的逻辑,先遍历到的节点和起点之间的「边」更少,累计的权重当然少。

换言之,先进入 Queue 的节点就是离起点近的,路径权重小的节点。

但对于加权图,路径中边的条数和路径的权重并不是正相关的关系了,有的路径可能边的条数很少,但每条边的权重都很大,那显然这条路径权重也会很大,很难成为最短路径。

比如题目给的这个例子:

你是可以一步从 0 走到 2,但路径权重不见得是最小的。

public int findCheapestPrice(int n, int[][] flights, int src, int dst, int K) {
    List<int[]>[] graph = new LinkedList[n];
    for (int i = 0; i < n; i++) {
        graph[i] = new LinkedList<>();
    }
    for (int[] edge : flights) {
        int from = edge[0];
        int to = edge[1];
        int price = edge[2];
        graph[from].add(new int[]{to, price});
    }

    // 启动 dijkstra 算法
    // 计算以 src 为起点在 k 次中转到达 dst 的最短路径
    K++;
    return dijkstra(graph, src, K, dst);
}

class State {
    // 图节点的 id
    int id;
    // 从 src 节点到当前节点的花费
    int costFromSrc;
    // 从 src 节点到当前节点经过的节点个数
    int nodeNumFromSrc;

    State(int id, int costFromSrc, int nodeNumFromSrc) {
        this.id = id;
        this.costFromSrc = costFromSrc;
        this.nodeNumFromSrc = nodeNumFromSrc;
    }
}

// 输入一个起点 src,计算从 src 到其他节点的最短距离
int dijkstra(List<int[]>[] graph, int src, int k, int dst) {
    // 定义:从起点 src 到达节点 i 的最短路径权重为 distTo[i]
    int[] distTo = new int[graph.length];
    // 定义:从起点 src 到达节点 i 至少要经过 nodeNumTo[i] 个节点
    int[] nodeNumTo = new int[graph.length];
    Arrays.fill(distTo, Integer.MAX_VALUE);
    Arrays.fill(nodeNumTo, Integer.MAX_VALUE);
    // base case
    distTo[src] = 0;
    nodeNumTo[src] = 0;

    // 优先级队列,costFromSrc 较小的排在前面
    Queue<State> pq = new PriorityQueue<>((a, b) -> {
        return a.costFromSrc - b.costFromSrc;
    });
    // 从起点 src 开始进行 BFS
    pq.offer(new State(src, 0, 0));

    while (!pq.isEmpty()) {
        State curState = pq.poll();
        int curNodeID = curState.id;
        int costFromSrc = curState.costFromSrc;
        int curNodeNumFromSrc = curState.nodeNumFromSrc;
        
        if (curNodeID == dst) {
            // 找到最短路径
            return costFromSrc;
        }
        if (curNodeNumFromSrc == k) {
            // 中转次数耗尽
            continue;
        }

        // 将 curNode 的相邻节点装入队列
        for (int[] neighbor : graph[curNodeID]) {
            int nextNodeID = neighbor[0];
            int costToNextNode = costFromSrc + neighbor[1];
            // 中转次数消耗 1
            int nextNodeNumFromSrc = curNodeNumFromSrc + 1;

             // 剪枝,如果中转次数更多,花费还更大,那必然不会是最短路径,否则会TLE
            if (costToNextNode > distTo[nextNodeID]
                && nextNodeNumFromSrc > nodeNumTo[nextNodeID]) {
                continue;
            }
            
            // 更新 dp table
            if (distTo[nextNodeID] > costToNextNode) {
                distTo[nextNodeID] = costToNextNode;
                nodeNumTo[nextNodeID] = nextNodeNumFromSrc;
            }
           
            //注意这里是在if外面,跟普通模板的不同。
            //因为state还有一个node元素,不能只依靠dist判断是否进队列
            pq.offer(new State(nextNodeID, costToNextNode, nextNodeNumFromSrc));
        }
    }
    return -1;
}

Version 2: DFS

加权最短路径问题,再加个 K 的限制也无妨,不也是个求最值的问题嘛,动态规划统统拿下。

我们先不管 K 的限制,但就「加权最短路径」这个问题来看看,它怎么就是个动态规划问题了呢?

比方说,现在我想计算 src 到 dst 的最短路径:

最小权重是多少?我不知道。

但我可以把问题进行分解:

s1, s2 是指向 dst 的相邻节点,它们之间的权重我是知道的,分别是 w1, w2。

只要我知道了从 src 到 s1, s2 的最短路径,我不就知道 src 到 dst 的最短路径了吗!

minPath(src, dst) = min(
    minPath(src, s1) + w1, 
    minPath(src, s2) + w2
)

这其实就是递归关系了,就是这么简单。

不过别忘了,题目对我们的最短路径还有个「路径上不能超过 K + 1 条边」的限制。

那么我们不妨定义这样一个 dp 函数:

int dp(int s, int k);

函数的定义如下:

从起点 src 出发,k 步之内(一步就是一条边)到达节点 s 的最小路径权重为 dp(s, k)。

那么,dp 函数的 base case 就显而易见了:

// 定义:从 src 出发,k 步之内到达 s 的最小成本
    int dp(int s, int k) {
        // 从 src 到 src,一步都不用走
        if (s == src) {
            return 0;
        }
        // 如果步数用尽,就无解了
        if (k == 0) {
            return -1;
        }

        // ...
    }

题目想求的最小机票开销就可以用 dp(dst, K+1) 来表示:

int findCheapestPrice(int n, int[][] flights, int src, int dst, int K) {
    // 将中转站个数转化成边的条数
    K++;
    //...
    return dp(dst, K);

添加了一个 K 条边的限制,状态转移方程怎么写呢?其实和刚才是一样的:

K 步之内从 src 到 dst 的最小路径权重是多少?我不知道。

但我可以把问题分解:

s1, s2 是指向 dst 的相邻节点,我只要知道 K - 1 步之内从 src 到达 s1, s2,那我就可以在 K 步之内从 src 到达 dst。

也就是如下关系式:

dp(dst, k) = min(
    dp(s1, k - 1) + w1, 
    dp(s2, k - 1) + w2
)

这就是新的状态转移方程,如果你能看懂这个算式,就已经可以解决这道题了。

代码实现

根据上述思路,我怎么知道 s1, s2 是指向 dst 的相邻节点,他们之间的权重是 w1, w2?

我希望给一个节点,就能知道有谁指向这个节点,还知道它们之间的权重,对吧。

专业点说,得用一个数据结构记录每个节点的「入度」indegree:

// 哈希表记录每个点的入度
// to -> [from, price]
HashMap<Integer, List<int[]>> indegree;
int src, dst;

public int findCheapestPrice(int n, int[][] flights, int src, int dst, int K) {
    // 将中转站个数转化成边的条数
    K++;
    this.src = src;
    this.dst = dst;
    
    indegree = new HashMap<>();
    for (int[] f : flights) {
        int from = f[0];
        int to = f[1];
        int price = f[2];
        // 记录谁指向该节点,以及之间的权重
        indegree.putIfAbsent(to, new LinkedList<>());
        indegree.get(to).add(new int[] {from, price});
    }
    
    return dp(dst, K);
}

有了 indegree 存储入度,那么就可以具体实现 dp 函数了:

// 定义:从 src 出发,k 步之内到达 s 的最短路径权重
int dp(int s, int k) {
    // base case
    if (s == src) {
        return 0;
    }
    if (k == 0) {
        return -1;
    }
    // 初始化为最大值,方便等会取最小值
    int res = Integer.MAX_VALUE;
    if (indegree.containsKey(s)) {
        // 当 s 有入度节点时,分解为子问题
        for (int[] v : indegree.get(s)) {
            int from = v[0];
            int price = v[1];
            // 从 src 到达相邻的入度节点所需的最短路径权重
            int subProblem = dp(from, k - 1);
            // 跳过无解的情况
            if (subProblem != -1) {
                res = Math.min(res, subProblem + price);
            }
        }
    }
    // 如果还是初始值,说明此节点不可达
    return res == Integer.MAX_VALUE ? -1 : res;
}

有之前的铺垫,这段解法逻辑应该是很清晰的。当然,对于动态规划问题,肯定要消除重叠子问题。

为什么有重叠子问题?很简单,如果某个节点同时指向两个其他节点,那么这两个节点就有相同的一个入度节点,就会产生重复的递归计算。

怎么消除重叠子问题?找问题的「状态」。

状态是什么?在问题分解(状态转移)的过程中变化的,就是状态。

谁在变化?显然就是 dp 函数的参数 s 和 k,每次递归调用,目标点 s 和步数约束 k 在变化。

所以,本题的状态有两个,应该算是二维动态规划,我们可以用一个 memo 二维数组或者哈希表作为备忘录,减少重复计算。

我们选用二维数组做备忘录吧,注意 K 是从 1 开始算的,所以备忘录初始大小要再加一:

int src, dst;
HashMap<Integer, List<int[]>> indegree;
// 备忘录
int[][] memo;

public int findCheapestPrice(int n, int[][] flights, int src, int dst, int K) {
    K++;
    this.src = src;
    this.dst = dst;
    // 初始化备忘录,全部填一个特殊值
    memo = new int[n][K + 1];
    for (int[] row : memo) {
        Arrays.fill(row, -888);
    }
    
    // 其他不变
    // ...
    
    return dp(dst, K);
}

// 定义:从 src 出发,k 步之内到达 s 的最小成本
int dp(int s, int k) {
    // base case
    if (s == src) {
        return 0;
    }
    if (k == 0) {
        return -1;
    }
    // 查备忘录,防止冗余计算
    if (memo[s][k] != -888) {
        return memo[s][k];
    }
    
    // 状态转移不变
    // ...
    
    // 存入备忘录
    memo[s][k] = res == Integer.MAX_VALUE ? -1 : res;
    return memo[s][k];
}

至此,这道题就通过自顶向下的递归方式解决了。当然,完全可以按照这个解法衍生出自底向上迭代的动态规划解法,但由于篇幅所限,我就不写了,反正本质上都是一样的。

Version 3: DP

class Solution {
    int[][] memo;
    public int findCheapestPrice(int n, int[][] flights, int src, int dst, int k) {
        memo = new int[n+1][k+2];
        return dp(n, flights, src, dst, k+1);
    }
    public int dp(int n, int[][] flights, int src, int dst, int k){
        // base case
        if(k < 0){
            return -1;
        }else if(src == dst){
            return 0;
        }

        if(memo[src][k] != 0){
           return memo[src][k];
        }
        int res = Integer.MAX_VALUE;
        for(int[] f : flights){
            if(f[0] != src)
                continue;
            int subProblem = dp(n, flights, f[1], dst, k-1);
            if(subProblem == -1){
                continue;
            }
            res = Math.min(res, subProblem + f[2]);
        }

        memo[src][k] = res==Integer.MAX_VALUE?-1:res;
        return memo[src][k];
    }
}

我们前文 中说到,求最短路径,肯定可以用 BFS 算法来解决。

不过呢,我们在 用的是普通的队列 Queue 来遍历多叉树,而对于加权图的最短路径来说,普通的队列不管用了,得用优先级队列 PriorityQueue。

所以,对于加权图的场景,我们需要优先级队列「自动排序」的特性,将路径权重较小的节点排在队列前面,以此为基础施展 BFS 算法,也就变成了 。

关于这个解法这里就不多解释了,可对照前文 理解。

我们前文 中说过,求最值的问题,很多都可能使用动态规划来求解。

备忘录初始值为啥初始为 -888?前文 说过,随便初始化一个无意义的值就行。

BFS 算法框架详解
BFS 算法框架详解
Dijkstra 算法
Dijkstra 算法模板
动态规划核心套路详解
base case 和备忘录的初始值怎么定