895. Maximum Frequency Stack (H)
Design a stack-like data structure to push elements to the stack and pop the most frequent element from the stack.
Implement the FreqStack
class:
FreqStack()
constructs an empty frequency stack.void push(int val)
pushes an integerval
onto the top of the stack.int pop()
removes and returns the most frequent element in the stack.If there is a tie for the most frequent element, the element closest to the stack's top is removed and returned.
Example 1:
Input
["FreqStack", "push", "push", "push", "push", "push", "push", "pop", "pop", "pop", "pop"]
[[], [5], [7], [5], [7], [4], [5], [], [], [], []]
Output
[null, null, null, null, null, null, null, 5, 7, 5, 4]
Explanation
FreqStack freqStack = new FreqStack();
freqStack.push(5); // The stack is [5]
freqStack.push(7); // The stack is [5,7]
freqStack.push(5); // The stack is [5,7,5]
freqStack.push(7); // The stack is [5,7,5,7]
freqStack.push(4); // The stack is [5,7,5,7,4]
freqStack.push(5); // The stack is [5,7,5,7,4,5]
freqStack.pop(); // return 5, as 5 is the most frequent. The stack becomes [5,7,5,7,4].
freqStack.pop(); // return 7, as 5 and 7 is the most frequent, but 7 is closest to the top. The stack becomes [5,7,5,4].
freqStack.pop(); // return 5, as 5 is the most frequent. The stack becomes [5,7,4].
freqStack.pop(); // return 4, as 4, 5 and 7 is the most frequent, but 4 is closest to the top. The stack becomes [5,7].
Constraints:
0 <= val <= 109
At most
2 * 104
calls will be made topush
andpop
.It is guaranteed that there will be at least one element in the stack before calling
pop
.
Solution:
这种设计数据结构的问题,主要是要搞清楚问题的难点在哪里,然后结合各种基本数据结构的特性,高效实现题目要求的 API。
那么,我们仔细思考一下 push
和 pop
方法,难点如下:
1、每次 pop
时,必须要知道频率最高的元素是什么。
2、如果频率最高的元素有多个,还得知道哪个是最近 push
进来的元素是哪个。
为了实现上述难点,我们要做到以下几点:
1、肯定要有一个变量 maxFreq
记录当前栈中最高的频率是多少。
2、我们得知道一个频率 freq
对应的元素有哪些,且这些元素要有时间顺序。
3、随着 pop
的调用,每个 val
对应的频率会变化,所以还得维持一个映射记录每个 val
对应的 freq
。
综上,我们可以先实现 FreqStack
所需的数据结构:
class FreqStack {
// 记录 FreqStack 中元素的最大频率
int maxFreq = 0;
// 记录 FreqStack 中每个 val 对应的出现频率,后文就称为 VF 表
HashMap<Integer, Integer> valToFreq = new HashMap<>();
// 记录频率 freq 对应的 val 列表,后文就称为 FV 表
HashMap<Integer, Stack<Integer>> freqToVals = new HashMap<>();
}
其实这有点类似前文 手把手实现 LFU 算法,注意 freqToVals
中 val
列表用一个栈实现,如果一个 freq
对应的元素有多个,根据栈的特点,可以首先取出最近添加的元素。
要记住在 push
和 pop
方法中同时修改 maxFreq
、VF
表、FV
表,否则容易出现 bug。
现在,我们可以来实现 push
方法了:
public void push(int val) {
// 修改 VF 表:val 对应的 freq 加一
int freq = valToFreq.getOrDefault(val, 0) + 1;
valToFreq.put(val, freq);
// 修改 FV 表:在 freq 对应的列表加上 val
freqToVals.putIfAbsent(freq, new Stack<>());
freqToVals.get(freq).push(val);
// 更新 maxFreq
maxFreq = Math.max(maxFreq, freq);
}
pop
方法的实现也非常简单:
public int pop() {
// 修改 FV 表:pop 出一个 maxFreq 对应的元素 v
Stack<Integer> vals = freqToVals.get(maxFreq);
int v = vals.pop();
// 修改 VF 表:v 对应的 freq 减一
int freq = valToFreq.get(v) - 1;
valToFreq.put(v, freq);
// 更新 maxFreq
if (vals.isEmpty()) {
// 如果 maxFreq 对应的元素空了
maxFreq--;
}
return v;
}
这样,两个 API 都实现了,算法执行过程如下:
嗯,这道题就解决了,
Last updated
Was this helpful?