Untitled

读完本文,你不仅学会了算法套路,还可以顺便解决如下题目:

———–

零钱兑换 2 是另一种典型背包问题的变体,我们前文已经讲了 经典动态规划:0-1 背包问题背包问题变体:相等子集分割

读本文之前,希望你已经看过前两篇文章,看过了动态规划和背包问题的套路,这篇继续按照背包问题的套路,列举一个背包问题的变形。

本文聊的是力扣第 518 题「 零钱兑换 II」,我描述一下题目:

给定不同面额的硬币 coins 和一个总金额 amount,写一个函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个

我们要完成的函数的签名如下:

int change(int amount, int[] coins);

比如说输入 amount = 5, coins = [1,2,5],算法应该返回 4,因为有如下 4 种方式可以凑出目标金额:

5=5

5=2+2+1

5=2+1+1+1

5=1+1+1+1+1

如果输入的 amount = 5, coins = [3],算法应该返回 0,因为用面额为 3 的硬币无法凑出总金额 5。

PS:至于零钱兑换 I,在我们前文 动态规划套路详解 写过。

我们可以把这个问题转化为背包问题的描述形式

有一个背包,最大容量为 amount,有一系列物品 coins,每个物品的重量为 coins[i]每个物品的数量无限。请问有多少种方法,能够把背包恰好装满?

这个问题和我们前面讲过的两个背包问题,有一个最大的区别就是,每个物品的数量是无限的,这也就是传说中的「完全背包问题」,没啥高大上的,无非就是状态转移方程有一点变化而已。

下面就以背包问题的描述形式,继续按照流程来分析。

解题思路

第一步要明确两点,「状态」和「选择」

状态有两个,就是「背包的容量」和「可选择的物品」,选择就是「装进背包」或者「不装进背包」嘛,背包问题的套路都是这样。

明白了状态和选择,动态规划问题基本上就解决了,只要往这个框架套就完事儿了:

for 状态1 in 状态1的所有取值:
    for 状态2 in 状态2的所有取值:
        for ...
            dp[状态1][状态2][...] = 计算(选择1,选择2...)

第二步要明确 dp 数组的定义

首先看看刚才找到的「状态」,有两个,也就是说我们需要一个二维 dp 数组。

dp[i][j] 的定义如下:

若只使用前 i 个物品(可以重复使用),当背包容量为 j 时,有 dp[i][j] 种方法可以装满背包。

换句话说,翻译回我们题目的意思就是:

若只使用 coins 中的前 i 个硬币的面值,若想凑出金额 j,有 dp[i][j] 种凑法

经过以上的定义,可以得到:

base case 为 dp[0][..] = 0, dp[..][0] = 1。因为如果不使用任何硬币面值,就无法凑出任何金额;如果凑出的目标金额为 0,那么“无为而治”就是唯一的一种凑法。

我们最终想得到的答案就是 dp[N][amount],其中 Ncoins 数组的大小。

大致的伪码思路如下:

int dp[N+1][amount+1]
dp[0][..] = 0
dp[..][0] = 1

for i in [1..N]:
    for j in [1..amount]:
        把物品 i 装进背包,
        不把物品 i 装进背包
return dp[N][amount]

第三步,根据「选择」,思考状态转移的逻辑

注意,我们这个问题的特殊点在于物品的数量是无限的,所以这里和之前写的 0-1 背包问题 文章有所不同。

如果你不把这第 i 个物品装入背包,也就是说你不使用 coins[i-1] 这个面值的硬币,那么凑出面额 j 的方法数 dp[i][j] 应该等于 dp[i-1][j],继承之前的结果。

如果你把这第 i 个物品装入了背包,也就是说你使用 coins[i-1] 这个面值的硬币,那么 dp[i][j] 应该等于 dp[i][j-coins[i-1]]

PS:由于 i 是从 1 开始的,所以 coins 的索引是 i-1 时表示第 i 个硬币的面值。

dp[i][j-coins[i-1]] 也不难理解,如果你决定使用这个面值的硬币,那么就应该关注如何凑出金额 j - coins[i-1]

比如说,你想用面值为 2 的硬币凑出金额 5,那么如果你知道了凑出金额 3 的方法,再加上一枚面额为 2 的硬币,不就可以凑出 5 了嘛。

综上就是两种选择,而我们想求的 dp[i][j] 是「共有多少种凑法」,所以 dp[i][j] 的值应该是以上两种选择的结果之和

for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= amount; j++) {
        if (j - coins[i-1] >= 0)
            dp[i][j] = dp[i - 1][j] 
                     + dp[i][j-coins[i-1]];
return dp[N][W]

PS:有的读者在这里可能会有疑问,不是说可以重复使用硬币吗?那么如果我确定「使用第 i 个面值的硬币」,我怎么确定这个面值的硬币被使用了多少枚?简单的一个 dp[i][j-coins[i-1]] 可以包含重复使用第 i 个硬币的情况吗?

对于这个问题,建议你再仔回头细阅读一下我们对 dp 数组的定义,然后把这个定义代入 dp[i][j-coins[i-1]] 看看:

若只使用前 i 个物品(可以重复使用),当背包容量为 j-coins[i-1] 时,有 dp[i][j-coins[i-1]] 种方法可以装满背包。

看到了吗,dp[i][j-coins[i-1]] 也是允许你使用第 i 个硬币的,所以说已经包含了重复使用硬币的情况,你一百个放心。

最后一步,把伪码翻译成代码,处理一些边界情况

我用 Java 写的代码,把上面的思路完全翻译了一遍,并且处理了一些边界问题:

int change(int amount, int[] coins) {
    int n = coins.length;
    int[][] dp = int[n + 1][amount + 1];
    // base case
    for (int i = 0; i <= n; i++) 
        dp[i][0] = 1;

    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= amount; j++)
            if (j - coins[i-1] >= 0)
                dp[i][j] = dp[i - 1][j] 
                         + dp[i][j - coins[i-1]];
            else 
                dp[i][j] = dp[i - 1][j];
    }
    return dp[n][amount];
}

而且,我们通过观察可以发现,dp 数组的转移只和 dp[i][..]dp[i-1][..] 有关,所以可以使用前文讲的 动态规划空间压缩技巧,进一步降低算法的空间复杂度:

int change(int amount, int[] coins) {
    int n = coins.length;
    int[] dp = new int[amount + 1];
    dp[0] = 1; // base case
    for (int i = 0; i < n; i++)
        for (int j = 1; j <= amount; j++)
            if (j - coins[i] >= 0)
                dp[j] = dp[j] + dp[j-coins[i]];
    
    return dp[amount];
}

这个解法和之前的思路完全相同,将二维 dp 数组压缩为一维,时间复杂度 O(N*amount),空间复杂度 O(amount)。

至此,这道零钱兑换问题也通过背包问题的框架解决了。

Last updated