797. All Paths From Source to Target (M)
https://leetcode.com/problems/all-paths-from-source-to-target/
Given a directed acyclic graph (DAG) of n
nodes labeled from 0
to n - 1
, find all possible paths from node 0
to node n - 1
and return them in any order.
The graph is given as follows: graph[i]
is a list of all nodes you can visit from node i
(i.e., there is a directed edge from node i
to node graph[i][j]
).
Example 1:
Input: graph = [[1,2],[3],[3],[]]
Output: [[0,1,3],[0,2,3]]
Explanation: There are two paths: 0 -> 1 -> 3 and 0 -> 2 -> 3.
Example 2:
Input: graph = [[4,3,1],[3,2,4],[3],[4],[]]
Output: [[0,4],[0,3,4],[0,1,3,4],[0,1,2,3,4],[0,1,4]]
Example 3:
Input: graph = [[1],[]]
Output: [[0,1]]
Example 4:
Input: graph = [[1,2,3],[2],[3],[]]
Output: [[0,1,2,3],[0,2,3],[0,3]]
Example 5:
Input: graph = [[1,3],[2],[3],[]]
Output: [[0,1,2,3],[0,3]]
Constraints:
n == graph.length
2 <= n <= 15
0 <= graph[i][j] < n
graph[i][j] != i
(i.e., there will be no self-loops).All the elements of
graph[i]
are unique.The input graph is guaranteed to be a DAG.
Solution:
Version 1 (DFS+BackTracking)
https://www.jiuzhang.com/problem/all-paths-from-source-to-target/
非常基础的DFS(回溯)的题目.
使用回溯法遍历从起点出发所有可能的路径, 把可以到达终点的路径放入答案中即可.
public class Solution {
/**
* @param graph: a 2D array
* @return: all possible paths from node 0 to node N-1
*/
public List<List<Integer>> allPathsSourceTarget(int[][] graph) {
List<List<Integer>> res = new ArrayList<>();
List<Integer> path = new ArrayList<>();
path.add(0);
dfs(graph, 0, res, path);
return res;
}
private void dfs(int[][] graph, int node, List<List<Integer>> res, List<Integer> path) {
if (node == graph.length - 1) {
res.add(new ArrayList<Integer>(path));
return;
}
for (int nextNode : graph[node]) {
path.add(nextNode);
dfs(graph, nextNode, res, path);
path.remove(path.size() - 1);
}
}
}
Version 2: (Traverse Graph)
解法很简单,以 0
为起点遍历图,同时记录遍历过的路径,当遍历到终点时将路径记录下来即可。
既然输入的图是无环的,我们就不需要 visited
数组辅助了,直接套用图的遍历框架:
// 记录所有路径
List<List<Integer>> res = new LinkedList<>();
public List<List<Integer>> allPathsSourceTarget(int[][] graph) {
LinkedList<Integer> path = new LinkedList<>();
traverse(graph, 0, path);
return res;
}
/* 图的遍历框架 */
void traverse(int[][] graph, int s, LinkedList<Integer> path) {
// 添加节点 s 到路径
path.addLast(s);
int n = graph.length;
if (s == n - 1) {
// 到达终点
res.add(new LinkedList<>(path));
path.removeLast();
return;
}
// 递归每个相邻节点
for (int v : graph[s]) {
traverse(graph, v, path);
}
// 从路径移出节点 s
path.removeLast();
}
这道题就这样解决了。
最后总结一下,图的存储方式主要有邻接表和邻接矩阵,无论什么花里胡哨的图,都可以用这两种方式存储。
在笔试中,最常考的算法是图的遍历,和多叉树的遍历框架是非常类似的。
Last updated
Was this helpful?