797. All Paths From Source to Target (M)

https://leetcode.com/problems/all-paths-from-source-to-target/

Given a directed acyclic graph (DAG) of n nodes labeled from 0 to n - 1, find all possible paths from node 0 to node n - 1 and return them in any order.

The graph is given as follows: graph[i] is a list of all nodes you can visit from node i (i.e., there is a directed edge from node i to node graph[i][j]).

Example 1:

Input: graph = [[1,2],[3],[3],[]]
Output: [[0,1,3],[0,2,3]]
Explanation: There are two paths: 0 -> 1 -> 3 and 0 -> 2 -> 3.

Example 2:

Input: graph = [[4,3,1],[3,2,4],[3],[4],[]]
Output: [[0,4],[0,3,4],[0,1,3,4],[0,1,2,3,4],[0,1,4]]

Example 3:

Input: graph = [[1],[]]
Output: [[0,1]]

Example 4:

Input: graph = [[1,2,3],[2],[3],[]]
Output: [[0,1,2,3],[0,2,3],[0,3]]

Example 5:

Constraints:

  • n == graph.length

  • 2 <= n <= 15

  • 0 <= graph[i][j] < n

  • graph[i][j] != i (i.e., there will be no self-loops).

  • All the elements of graph[i] are unique.

  • The input graph is guaranteed to be a DAG.

Solution:

Version 1 (DFS+BackTracking)

https://www.jiuzhang.com/problem/all-paths-from-source-to-target/

非常基础的DFS(回溯)的题目.

使用回溯法遍历从起点出发所有可能的路径, 把可以到达终点的路径放入答案中即可.

Version 2: (Traverse Graph)

解法很简单,以 0 为起点遍历图,同时记录遍历过的路径,当遍历到终点时将路径记录下来即可

既然输入的图是无环的,我们就不需要 visited 数组辅助了,直接套用图的遍历框架:

这道题就这样解决了。

最后总结一下,图的存储方式主要有邻接表和邻接矩阵,无论什么花里胡哨的图,都可以用这两种方式存储。

在笔试中,最常考的算法是图的遍历,和多叉树的遍历框架是非常类似的。

Last updated

Was this helpful?