Nine Chapter
  • Introduction
    • Summary
  • 1.Binary Search
    • Introduction
    • 458.Last position of target
    • 600.Smallest Rectangle Enclosing Black Pixels
    • 585.Maximum Number in Mountain Sequence
    • 183.Wood Cut
    • 62.Search in Rotated Sorted Array
    • 63.Search in Rotated Sorted Array II
    • 159.Find Minimum in Rotated Sorted Array
    • 160.Find Minimum in Rotated Sorted Array II
    • 75.Find Peak Element
    • 60.Search Insert Position
    • 28.Search a 2D Matrix
    • 240. Search a 2D Matrix II
    • 14.First Position of Target
    • 74.First Bad Version
    • 875. Koko Eating Bananas
    • 1011. Capacity To Ship Packages Within D Days (M)
    • 410. Split Array Largest Sum (H)
    • 475. Heaters (M)
    • 1044. Longest Duplicate Substring (H)
  • 2.Binary Tree
    • Summary
      • 二叉树八股文:递归改迭代
      • BST
      • Frame
    • 66.Binary Tree Preorder Traversal
    • 67.🌟Binary Tree Inorder Traversal
    • 145. Binary Tree Postorder Traversal (E)
    • 98.Validate Binary Search Tree(M)
    • 85.Insert Node in a Binary Search Tree
    • 104. Maximum Depth of Binary Tree(E)
    • 235. Lowest Common Ancestor of a Binary Search Tree (E)
    • 236.Lowest Common Ancestor of Binary Tree(M)
    • 578.Lowest Common Ancestor III
    • 1120.Subtree with Maximum Average
    • 596.Minimum Subtree
    • 480.Binary Tree Paths
    • 453.Flatten Binary Tree to Linked List
    • 110.Balanced Binary Tree
    • 376.Binary Tree Path Sum
    • 246.Binary Tree Path Sum II
    • 475.Binary Tree Maximum Path Sum II
    • 124.Binary Tree Maximum Path Sum (H)
    • Path Sum (*)
      • 112. Path Sum
      • 113. Path Sum II
      • 437. Path Sum III
    • 177.Convert Sorted Array to Binary Search Tree With Minimal Height
    • 7.Binary Tree Serialization
    • 72,73.Construct Binary Tree
    • Binary Search Tree Path
    • 245.Subtree
    • 469.Identical Binary Tree
    • 87.Remove Node in Binary Search Tree
    • 116.Populating Next Right Pointers in Each Node (M)
    • 114. Flatten Binary Tree to Linked List(M)
    • 654.Maximum Binary Tree (M)
    • 105. 🌟Construct Binary Tree from Preorder and Inorder Traversal (M)
    • 106. Construct Binary Tree from Inorder and Postorder Traversal (M)
    • 652. Find Duplicate Subtrees(M)
    • 230. Kth Smallest Element in a BST (M)
    • 538&1038. Convert BST to Greater Tree
    • 450. Delete Node in a BST (M)
    • 701. Insert into a Binary Search Tree (M)
    • 96. Unique Binary Search Trees
    • 95. Unique Binary Search Trees II (M)
    • 1373. Maximum Sum BST in Binary Tree (H)
    • 297. Serialize and Deserialize Binary Tree (H)
    • 222. Count Complete Tree Nodes (M)
    • 1120. Maximum Average Subtree
    • 341. Flatten Nested List Iterator
    • 333. Largest BST Subtree (M)
    • 543. Diameter of Binary Tree
    • Binary Tree Longest Consecutive Sequence(*)
      • 298.Binary Tree Longest Consecutive Sequence
      • 549. Binary Tree Longest Consecutive Sequence II (M)
  • 3.Breadth First Search
    • Introduction
      • BFS 算法解题套路框架
      • 双向 BFS 优化
    • 102.Binary Tree Level Order Traversal (M)
    • 103. Binary Tree Zigzag Level Order Traversal (M)
    • 107.Binary Tree Level Order Traversal II(M)
    • 618.Search Graph Nodes
    • 207.Course Schedule (M)
    • 210.Course Schedule II (M)
    • 611.Knight Shortest Path
    • 598.Zombie in Matrix
    • 133.Clone Graph (M)
    • 178.Graph Valid Tree
    • 7.Binary Tree Serialization
    • 574.Build Post Office
    • 573.Build Post Office II
    • 127.Topological Sorting
    • 127.Word Ladder
    • 126. Word Ladder II
    • (LeetCode)515.Find Largest Value in Each Tree Row
    • 111. Minimum Depth of Binary Tree (E)
    • 752. Open the Lock
    • 542. 01 Matrix (M)
    • 1306. Jump Game III (M)
  • 4.Depth First Search+BackTracking
    • Summary
      • FloodFill 算法
    • 136.Palindrome Partitioning
    • 39.Combination Sum
    • 40.Combination Sum II
    • 377. Combination Sum IV
    • 77.Combinations (M)
    • 78.Subsets (M)
    • 90.Subsets II (M)
    • 46.🌟Permutations
    • 47.Permutations II
    • 582.Word Break II
    • 490.The Maze (M)
    • 51.N-Queens (H)
    • 52. N-Queens II (H)
    • 698. Partition to K Equal Sum Subsets (M)
    • 22. Generate Parentheses (M)
    • 岛屿问题
      • 200.Number of Islands (M)
      • 1254. Number of Closed Islands (M)
      • 1020. Number of Enclaves (M)
      • 695. Max Area of Island (M)
      • 1905. Count Sub Islands (M)
      • 694. Number of Distinct Islands
    • 131. Palindrome Partitioning (M)
    • 967. Numbers With Same Consecutive Differences (M)
    • 79. Word Search (M)
    • 212. Word Search II (M)
    • 472. Concatenated Words (H)
    • Page 2
    • 291. Word Pattern II
    • 17. Letter Combinations of a Phone Number (M)
  • 5.LinkedList
    • Summary
      • 单链表的倒数第 k 个节点
      • Merge two/k sorted LinkedList
      • Middle of the Linked List
      • 判断链表是否包含环
      • 两个链表是否相交 Intersection of Two Linked Lists
      • 递归反转链表
      • 如何判断回文链表
    • 599.Insert into a Cyclic Sorted List
    • 21.Merge Two Sorted Lists (E)
    • 23.Merge k Sorted Lists (H)
    • 105.Copy List with Random Pointer
    • 141.Linked List Cycle (E)
    • 142.Linked List Cycle II (M)
    • 148.Sort List (M)
    • 86.Partition List (M)
    • 83.Remove Duplicates from Sorted List(E)
    • 82.Remove Duplicates from Sorted List II (M)
    • 206.Reverse Linked List (E)
    • 92.Reverse Linked List II (M)
    • 143.Reorder List (M)
    • 19.Remove Nth Node From End of List (E)
    • 170.Rotate List
    • 🤔25.Reverse Nodes in k-Group (H)
    • 452.Remove Linked List Elements
    • 167.Add Two Numbers
    • 221.Add Two Numbers II
    • 876. Middle of the Linked List (E)
    • 160. Intersection of Two Linked Lists (E)
    • 234. Palindrome Linked List (E)
    • 2130. Maximum Twin Sum of a Linked List (M)
  • 6.Array
    • Summary
      • 前缀和思路PrefixSum
      • 差分数组 Difference Array
      • 双指针Two Pointers
      • 滑动窗口算法算法
      • Sliding windows II
      • 二分搜索Binary Search
      • 排序算法
      • 快速选择算法
    • 604.Window Sum
    • 138.Subarray Sum
    • 41.Maximum Subarray
    • 42.Maximum Subarray II
    • 43.Maximum Subarray III
    • 620.Maximum Subarray IV
    • 621.Maximum Subarray V
    • 6.Merge Two Sorted Arrays
    • 88.Merge Sorted Array
    • 547.Intersection of Two Arrays
    • 548.Intersection of Two Arrays II
    • 139.Subarray Sum Closest
    • 65.Median of two Sorted Arrays
    • 636.132 Pattern
    • 402.Continuous Subarray Sum
    • 303. Range Sum Query - Immutable (E)
    • 304.Range Sum Query 2D - Immutable (M)
    • 560. Subarray Sum Equals K (M)
    • 370. Range Addition(M)
    • 1109. Corporate Flight Bookings(M)
    • 1094. Car Pooling (M)
    • 76. Minimum Window Substring(H)
    • 567. Permutation in String (M)
    • 438. Find All Anagrams in a String(M)
    • 3. Longest Substring Without Repeating Characters (M)
    • 380. Insert Delete GetRandom O(1) (M)
    • 710. Random Pick with Blacklist (H)
    • 528. Random Pick with Weight (M)
    • 26. Remove Duplicates from Sorted Array (E)
    • 27. Remove Element (E)
    • 283. Move Zeroes (E)
    • 659. Split Array into Consecutive Subsequences (M)
    • 4. Median of Two Sorted Arrays (H)
    • 48. Rotate Image (M)
    • 54. Spiral Matrix (M)
    • 59. Spiral Matrix II (M)
    • 918. Maximum Sum Circular Subarray
    • 128. Longest Consecutive Sequence (M)
    • 238. Product of Array Except Self (M)
    • 1438. Longest Continuous Subarray With Absolute Diff Less Than or Equal to Limit (M)
    • 1151. Minimum Swaps to Group All 1's Together (M)
    • 2134. Minimum Swaps to Group All 1's Together II
    • 2133. Check if Every Row and Column Contains All Numbers
    • 632. Smallest Range Covering Elements from K Lists (H)
    • 36. Valid Sudoku (M)
    • 383. Ransom Note
    • 228. Summary Ranges
  • 7.Two pointers
    • Summary
      • Two Sum
      • 2Sum 3Sum 4Sum 问题
    • 1.Two Sum I
    • 170.Two Sum III - Data structure design
    • 167.Two Sum II- Input array is sorted
    • 609.Two Sum - Less than or equal to target
    • 610.Two Sum - Difference equals to targe
    • 587.Two Sum - Unique pairs
    • 533.Two Sum - Closest to target
    • 443.Two Sum - Greater than target
    • 653. Two Sum IV - Input is a BST (M)
    • 57.3Sum
    • 59.3Sum Closest
    • 58.4Sum
    • 148.Sort Colors
    • 143.Sort Colors II
    • 31.Partition Array
    • 625.Partition Array II
    • 382.Triangle Count
      • 611. Valid Triangle Number
    • 521.Remove Duplicate Numbers in Array
    • 167. Two Sum II - Input Array Is Sorted (E)
    • 870. Advantage Shuffle (M)
    • 9. Palindrome Number (E)
    • 125. Valid Palindrome(E)
    • 5. Longest Palindromic Substring (M)
    • 42. Trapping Rain Water
    • 11. Container With Most Water (M)
    • 658. Find K Closest Elements (M)
    • 392. Is Subsequence
  • 8.Data Structure
    • Summary
      • 数据结构的存储方式
      • 单调栈
      • 单调队列
      • 二叉堆 Binary Heap
      • TreeMap
      • TreeSet
      • 🌟Trie
      • Trie Application
    • 155. Min Stack (E)
    • 716. Max Stack (E)
    • 1648. Sell Diminishing-Valued Colored Balls
    • 232. Implement Queue using Stacks (E)
    • 225. Implement Stack using Queues(E)
    • 84.Largest Rectangle in Histogram
    • 128.Hash Function
    • Max Tree
    • 544.Top k Largest Numbers
    • 545.Top k Largest Numbers II
    • 613.High Five
    • 606.Kth Largest Element II
    • 5.Kth Largest Element
    • 129.Rehashing
    • 4.Ugly Number II
    • 517.Ugly Number
    • 28. Implement strStr()
    • 594.strStr II
    • 146.LRU Cache
    • 460.LFU Cache
    • 486.Merge k Sorted Arrays
    • 130.Heapify
    • 215. Kth Largest Element in an Array (M)
    • 612.K Closest Points
    • 692. Top K Frequent Words
    • 347.Top K Frequent Elements
    • 601.Flatten 2D Vector
    • 540.Zigzag Iterator
    • 541.Zigzag Iterator II
    • 423.Valid Parentheses
    • 488.Happy Number
    • 547.Intersection of Two Arrays
    • 548.Intersection of Two Arrays II
    • 627.Longest Palindrome
    • 638.Strings Homomorphism
    • 138.Subarray Sum
    • 647.Substring Anagrams
    • 171.Anagrams
    • 739. Daily Temperatures(M)
    • 496. Next Greater Element I (E)
    • 503. Next Greater Element II(M)
    • 316. Remove Duplicate Letters(M) & 1081. Smallest Subsequence of Distinct Characters
    • 239. Sliding Window Maximum (H)
    • 355. Design Twitter (M)
    • 895. Maximum Frequency Stack (H)
    • 20. Valid Parentheses (E)
    • 921. Minimum Add to Make Parentheses Valid (M)
    • 1541. Minimum Insertions to Balance a Parentheses String (M)
    • 32. Longest Valid Parentheses (H)
    • Basic Calculator (*)
      • 224. Basic Calculator
      • 227. Basic Calculator II (M)
    • 844. Backspace String Compare
    • 295. Find Median from Data Stream
    • 208. Implement Trie (Prefix Tree)
    • 461.Kth Smallest Numbers in Unsorted Array
    • 1152.Analyze user website visit pattern
    • 811. Subdomain Visit Count (M)
    • 71. Simplify Path (M)
    • 362. Design Hit Counter
  • 9.Dynamic Programming
    • Summary
      • 最优子结构 Optimal Sustructure
      • 子序列解题模板
      • 空间压缩
      • 背包问题
        • Untitled
      • 股票买卖问题
      • KMP
    • 109.Triangle
    • 110.Minimum Path Sum
    • 114.Unique Paths
    • 115.Unique Paths II
    • 70.Climbing Stairs
    • 272.Climbing StairsII
    • 116.Jump Game
    • 117.Jump Game II
    • 322.Coin Change
    • 518. Coin Change 2 ()
    • Backpack I~VI
      • LintCode 563.Backpack V (M)
    • Best Time to Buy and Sell Stock(*)
      • 121. Best Time to Buy and Sell Stock
      • 122. Best Time to Buy and Sell Stock II (M)
      • 123. Best Time to Buy and Sell Stock III (H)
      • 188. Best Time to Buy and Sell Stock IV (H)
      • 309. Best Time to Buy and Sell Stock with Cooldown (M)
      • 714. Best Time to Buy and Sell Stock with Transaction Fee (M)
    • 394.Coins in a line
    • 395.Coins in a Line II
    • 509. Fibonacci Number (E)
    • 931. Minimum Falling Path Sum (M)
    • 494. Target Sum (M)
    • 72. Edit Distance (H)
    • 300.Longest Increasing Subsequence
    • 1143. Longest Common Subsequence (M)
    • 718. Maximum Length of Repeated Subarray
    • 583. Delete Operation for Two Strings (M)
    • 712. Minimum ASCII Delete Sum for Two Strings(M)
    • 53. Maximum Subarray (E)
    • 516. Longest Palindromic Subsequence (M)
    • 1312. Minimum Insertion Steps to Make a String Palindrome (H)
    • 416. Partition Equal Subset Sum (M)
    • 64. Minimum Path Sum(M)
    • 651. 4 Keys Keyboards (M)
    • House Robber (*)
      • 198. House Robber (M)
      • 213. House Robbber II
      • 337. House Robber III (M)
    • Word Break (*)
      • 139.Word Break (M)
    • 140. Word Break II (H)
    • 828. Count Unique Characters of All Substrings of a Given String (H)
    • 174. Dungeon Game (H)
    • 1567. Maximum Length of Subarray With Positive Product (M)
  • 10. Graph
    • Introduction
      • 有向图的环检测
      • 拓扑排序
      • 二分图判定
      • Union-Find
      • 最小生成树(Minimum Spanning Tree)算法
        • KRUSKAL 最小生成树算法
        • Prim 最小生成树算法
      • Dijkstra 最短路径算法
      • BFS vs DFS
    • 797. All Paths From Source to Target (M)
    • 785. Is Graph Bipartite? (M)
    • 886. Possible Bipartition (M)
    • 130. Surrounded Regions (M)
    • 990. Satisfiability of Equality Equations (M)
    • 721. Accounts Merge (M)
    • 323. Number of Connected Components in an Undirected Graph (M)
    • 261. Graph Valid Tree
    • 1135. Connecting Cities With Minimum Cost
    • 1584. Min Cost to Connect All Points (M)
    • 277. Find the Celebrity (M)
    • 743. Network Delay Time (M)
    • 1631. Path With Minimum Effort (M)
    • 1514. Path with Maximum Probability (M)
    • 589.Connecting Graph
    • 🌟787. Cheapest Flights Within K Stops (M)
    • 2050. Parallel Courses III (H)
    • 1293. Shortest Path in a Grid with Obstacles Elimination (H)
    • 864. Shortest Path to Get All Keys (H)
    • 269. Alien Dictionary (H)
    • 1192. Critical Connections in a Network (H)
    • 529. Minesweeper (M)
  • 11.Math
    • Page 1
Powered by GitBook
On this page
  • Solution 1: (Standard inorder traverse)
  • Solution 2: (Non recursive inorder traverse)
  • Solution 3:

Was this helpful?

  1. 2.Binary Tree

230. Kth Smallest Element in a BST (M)

https://leetcode.com/problems/kth-smallest-element-in-a-bst/

Previous652. Find Duplicate Subtrees(M)Next538&1038. Convert BST to Greater Tree

Last updated 3 years ago

Was this helpful?

Given the root of a binary search tree, and an integer k, return the kth smallest value (1-indexed) of all the values of the nodes in the tree.

Example 1:

Input: root = [3,1,4,null,2], k = 1
Output: 1

Example 2:

Input: root = [5,3,6,2,4,null,null,1], k = 3
Output: 3

Constraints:

  • The number of nodes in the tree is n.

  • 1 <= k <= n <= 104

  • 0 <= Node.val <= 104

Follow up: If the BST is modified often (i.e., we can do insert and delete operations) and you need to find the kth smallest frequently, how would you optimize?

Solution 1: (Standard inorder traverse)

一个直接的思路就是升序排序,然后找第 k 个元素呗。BST 的中序遍历其实就是升序排序的结果,找第 k 个元素肯定不是什么难事。

时间复杂度O(n) 空间复杂度O(n)

按照这个思路,可以直接写出代码:

int kthSmallest(TreeNode root, int k) {
    // 利用 BST 的中序遍历特性
    traverse(root, k);
    return res;
}

// 记录结果
int res = 0;
// 记录当前元素的排名
int rank = 0;
void traverse(TreeNode root, int k) {
    if (root == null) {
        return;
    }
    traverse(root.left, k);
    /* 中序遍历代码位置 */
    rank++;
    if (k == rank) {
        // 找到第 k 小的元素
        res = root.val;
        return;
    }
    /*****************/
    traverse(root.right, k);
}

Solution 2: (Non recursive inorder traverse)

详情见LeetCode 67, 区别就是判断标准不是while(!stack.empty()) 而是只走k-1步,stack.peek() 就是第k小得元素。

  public int kthSmallest(TreeNode root, int k) { 
  List list = new ArrayList(); 
  Stack stack = new Stack();
  while(root != null)
  {
      stack.push(root);
      root = root.left;
  }
    
  for(int i = 1; i< k; i++)
  {
      TreeNode top = stack.pop();
      list.add(top.val);
      
      if(top.right != null)
      {
          TreeNode rightNode = top.right;
          while(rightNode !=null)
          {
              stack.push(rightNode);
              rightNode = rightNode.left;
          }
      }
  }
    return stack.peek().val;
}  

Solution 3:

如果让你实现一个在二叉搜索树中通过排名计算对应元素的方法 select(int k),你会怎么设计?

如果按照我们刚才说的方法,利用「BST 中序遍历就是升序排序结果」这个性质,每次寻找第 k 小的元素都要中序遍历一次,最坏的时间复杂度是 O(N),N 是 BST 的节点个数。

要知道 BST 性质是非常牛逼的,像红黑树这种改良的自平衡 BST,增删查改都是 O(logN) 的复杂度,让你算一个第 k 小元素,时间复杂度竟然要 O(N),有点低效了。

所以说,计算第 k 小元素,最好的算法肯定也是对数级别的复杂度,不过这个依赖于 BST 节点记录的信息有多少。

我们想一下 BST 的操作为什么这么高效?就拿搜索某一个元素来说,BST 能够在对数时间找到该元素的根本原因还是在 BST 的定义里,左子树小右子树大嘛,所以每个节点都可以通过对比自身的值判断去左子树还是右子树搜索目标值,从而避免了全树遍历,达到对数级复杂度。

那么回到这个问题,想找到第 k 小的元素,或者说找到排名为 k 的元素,如果想达到对数级复杂度,关键也在于每个节点得知道他自己排第几。

比如说你让我查找排名为 k 的元素,当前节点知道自己排名第 m,那么我可以比较 m 和 k 的大小:

1、如果 m == k,显然就是找到了第 k 个元素,返回当前节点就行了。

2、如果 k < m,那说明排名第 k 的元素在左子树,所以可以去左子树搜索第 k 个元素。

3、如果 k > m,那说明排名第 k 的元素在右子树,所以可以去右子树搜索第 k - m - 1 个元素。

这样就可以将时间复杂度降到 O(logN) 了。

那么,如何让每一个节点知道自己的排名呢?

这就是我们之前说的,需要在二叉树节点中维护额外信息。每个节点需要记录,以自己为根的这棵二叉树有多少个节点。

也就是说,我们 TreeNode 中的字段应该如下:

class TreeNode {
    int val;
    // 以该节点为根的树的节点总数
    int size;
    TreeNode left;
    TreeNode right;
}

有了 size 字段,外加 BST 节点左小右大的性质,对于每个节点 node 就可以通过 node.left 推导出 node 的排名,从而做到我们刚才说到的对数级算法。

当然,size 字段需要在增删元素的时候需要被正确维护,力扣提供的 TreeNode 是没有 size 这个字段的,所以我们这道题就只能利用 BST 中序遍历的特性实现了,但是我们上面说到的优化思路是 BST 的常见操作,还是有必要理解的。

具体解法可以通过一个HashMap 来实现上述每个节点对size 的属性。

时间复杂度 O(n)O(n) 最好最坏都是。 算法思想类似于 Quick Select。 这个算法的好处是,如果多次查询的话,给每个节点统计儿子个数这个过程只需要做一次。查询可以很快。

/**
 * Definition of TreeNode:
 * public class TreeNode {
 *     public int val;
 *     public TreeNode left, right;
 *     public TreeNode(int val) {
 *         this.val = val;
 *         this.left = this.right = null;
 *     }
 * }
 */

public class Solution {
    /**
     * @param root: the given BST
     * @param k: the given k
     * @return: the kth smallest element in BST
     */
    public int kthSmallest(TreeNode root, int k) {
        Map<TreeNode, Integer> numOfChildren = new HashMap<>();
        countNodes(root, numOfChildren);
        return quickSelectOnTree(root, k, numOfChildren);
    }
    
    private int countNodes(TreeNode root, Map<TreeNode, Integer> numOfChildren) {
        if (root == null) {
            return 0;
        }
        
        int left = countNodes(root.left, numOfChildren);
        int right = countNodes(root.right, numOfChildren);
        numOfChildren.put(root, left + right + 1);
        return left + right + 1;
    }
    
    private int quickSelectOnTree(TreeNode root, int k, Map<TreeNode, Integer> numOfChildren) {
        if (root == null) {
            return -1;
        }
        
        int left = root.left == null ? 0 : numOfChildren.get(root.left);
        if (left >= k) {
            return quickSelectOnTree(root.left, k, numOfChildren);
        }
        if (left + 1 == k) {
            return root.val;
        }
        
        return quickSelectOnTree(root.right, k - left - 1, numOfChildren);
    }
}

Submitted from LeetCode:

class Solution {
    Map<TreeNode, Integer> map = new HashMap<TreeNode, Integer>();
    int result = 0;
    public int kthSmallest(TreeNode root, int k) 
    {
        //maintain a mapping have every node location info
        countChildNode(root);
        helper(root, k);
        return result;
    }  
    
    public int countChildNode(TreeNode root)
    {
        if(root ==  null)
        {
            return 0;
        }
        
        int left = countChildNode(root.left);
        int right = countChildNode(root.right);
        map.put(root, left+right+1);
        
        return left+right+1;
    }
    
    public void helper (TreeNode root, int k)
    {
        if(root == null)
        {
            return;
        }
        
        // 对于每个节点 node 就可以通过 node.left 推导出 node 的排名
        int current;
        if(root.left == null)
        {
            //root.left == null 说明当前root就是最左边的,就是第一。
            current = 1;
        }else
        {
            current = map.get(root.left)+1;
        }
      
        if(k == current)
        {
            result = root.val;
            return;
        }
        
        // k is in the right tree of the current
        if(k > current)
        {
           helper(root.right, k-current);
        }
        // k is in the left tree of the current
        if(k < current)
        {
           helper(root.left, k);
        }
    }
}

我们旧文 中就提过今天的这个问题:

https://www.jiuzhang.com/solution/kth-smallest-element-in-a-bst/
高效计算数据流的中位数