886. Possible Bipartition (M)
https://leetcode.com/problems/possible-bipartition/
We want to split a group of n
people (labeled from 1
to n
) into two groups of any size. Each person may dislike some other people, and they should not go into the same group.
Given the integer n
and the array dislikes
where dislikes[i] = [ai, bi]
indicates that the person labeled ai
does not like the person labeled bi
, return true
if it is possible to split everyone into two groups in this way.
Example 1:
Input: n = 4, dislikes = [[1,2],[1,3],[2,4]]
Output: true
Explanation: group1 [1,4] and group2 [2,3].
Example 2:
Input: n = 3, dislikes = [[1,2],[1,3],[2,3]]
Output: false
Example 3:
Input: n = 5, dislikes = [[1,2],[2,3],[3,4],[4,5],[1,5]]
Output: false
Constraints:
1 <= n <= 2000
0 <= dislikes.length <= 104
dislikes[i].length == 2
1 <= dislikes[i][j] <= n
ai < bi
All the pairs of
dislikes
are unique.
Solution:
其实这题考察的就是二分图的判定:
如果你把每个人看做图中的节点,相互讨厌的关系看做图中的边,那么 dislikes
数组就可以构成一幅图;
又因为题目说互相讨厌的人不能放在同一组里,相当于图中的所有相邻节点都要放进两个不同的组;
那就回到了「双色问题」,如果能够用两种颜色着色所有节点,且相邻节点颜色都不同,那么你按照颜色把这些节点分成两组不就行了嘛。
所以解法就出来了,我们把 dislikes
构造成一幅图,然后执行二分图的判定算法即可:
private boolean ok = true;
private boolean[] color;
private boolean[] visited;
public boolean possibleBipartition(int n, int[][] dislikes) {
// 图节点编号从 1 开始
color = new boolean[n + 1];
visited = new boolean[n + 1];
// 转化成邻接表表示图结构
List<Integer>[] graph = buildGraph(n, dislikes);
for (int v = 1; v <= n; v++) {
if (!visited[v]) {
traverse(graph, v);
}
}
return ok;
}
// 建图函数
private List<Integer>[] buildGraph(int n, int[][] dislikes) {
// 图节点编号为 1...n
List<Integer>[] graph = new LinkedList[n + 1];
for (int i = 1; i <= n; i++) {
graph[i] = new LinkedList<>();
}
for (int[] edge : dislikes) {
int v = edge[1];
int w = edge[0];
// 「无向图」相当于「双向图」
// v -> w
graph[v].add(w);
// w -> v
graph[w].add(v);
}
return graph;
}
// 和之前的 traverse 函数完全相同
private void traverse(List<Integer>[] graph, int v) {
if (!ok) return;
visited[v] = true;
for (int w : graph[v]) {
if (!visited[w]) {
color[w] = !color[v];
traverse(graph, w);
} else {
if (color[w] == color[v]) {
ok = false;
}
}
}
}
这个题目要注意的是 buildGraph要一个双向图,即是undirected
至此,这道题也使用 DFS 算法解决了,如果你想用 BFS 算法,和之前写的解法是完全一样的,可以自己尝试实现。
Last updated
Was this helpful?