1143. Longest Common Subsequence (M)
https://leetcode.com/problems/longest-common-subsequence/
Given two strings text1 and text2, return the length of their longest common subsequence. If there is no common subsequence, return 0.
A subsequence of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters.
For example,
"ace"is a subsequence of"abcde".
A common subsequence of two strings is a subsequence that is common to both strings.
Example 1:
Input: text1 = "abcde", text2 = "ace"
Output: 3
Explanation: The longest common subsequence is "ace" and its length is 3.Example 2:
Input: text1 = "abc", text2 = "abc"
Output: 3
Explanation: The longest common subsequence is "abc" and its length is 3.Example 3:
Input: text1 = "abc", text2 = "def"
Output: 0
Explanation: There is no such common subsequence, so the result is 0.
Constraints:
1 <= text1.length, text2.length <= 1000text1andtext2consist of only lowercase English characters.
Solution:
如果没有做过这道题,一个最简单的暴力算法就是,把s1和s2的所有子序列都穷举出来,然后看看有没有公共的,然后在所有公共子序列里面再寻找一个长度最大的。
显然,这种思路的复杂度非常高,你要穷举出所有子序列,这个复杂度就是指数级的,肯定不实际。
正确的思路是不要考虑整个字符串,而是细化到s1和s2的每个字符。前文 子序列解题模板 中总结的一个规律:
对于两个字符串求子序列的问题,都是用两个指针i和j分别在两个字符串上移动,大概率是动态规划思路。
最长公共子序列的问题也可以遵循这个规律,我们可以先写一个dp函数:
这个dp函数的定义是:dp(s1, i, s2, j)计算s1[i..]和s2[j..]的最长公共子序列长度。
根据这个定义,那么我们想要的答案就是dp(s1, 0, s2, 0),且 base case 就是i == len(s1)或j == len(s2)时,因为这时候s1[i..]或s2[j..]就相当于空串了,最长公共子序列的长度显然是 0:
接下来,咱不要看s1和s2两个字符串,而是要具体到每一个字符,思考每个字符该做什么。
我们只看s1[i]和s2[j],如果s1[i] == s2[j],说明这个字符一定在lcs中:
这样,就找到了一个lcs中的字符,根据dp函数的定义,我们可以完善一下代码:
刚才说的s1[i] == s2[j]的情况,但如果s1[i] != s2[j],应该怎么办呢?
s1[i] != s2[j]意味着,s1[i]和s2[j]中至少有一个字符不在lcs中:
如上图,总共可能有三种情况,我怎么知道具体是那种情况呢?
其实我们也不知道,那就把这三种情况的答案都算出来,取其中结果最大的那个呗,因为题目让我们算「最长」公共子序列的长度嘛。
这三种情况的答案怎么算?回想一下我们的dp函数定义,不就是专门为了计算它们而设计的嘛!
代码可以再进一步:
这里就已经非常接近我们的最终答案了,还有一个小的优化,情况三「s1[i]和s2[j]都不在 lcs 中」其实可以直接忽略。
因为我们在求最大值嘛,情况三在计算s1[i+1..]和s2[j+1..]的lcs长度,这个长度肯定是小于等于情况二s1[i..]和s2[j+1..]中的lcs长度的,因为s1[i+1..]比s1[i..]短嘛,那从这里面算出的lcs当然也不可能更长嘛。
同理,情况三的结果肯定也小于等于情况一。说白了,情况三被情况一和情况二包含了,所以我们可以直接忽略掉情况三,完整代码如下:
以上思路完全就是按照我们之前的爆文 动态规划套路框架 来的,应该是很容易理解的。至于为什么要加memo备忘录,我们之前写过很多次,为了照顾新来的读者,这里再简单重复一下,首先抽象出我们核心dp函数的递归框架:
你看,假设我想从dp(i, j)转移到dp(i+1, j+1),有不止一种方式,可以直接走#1,也可以走#2 -> #3,也可以走#3 -> #2。
这就是重叠子问题,如果我们不用memo备忘录消除子问题,那么dp(i+1, j+1)就会被多次计算,这是没有必要的。
至此,最长公共子序列问题就完全解决了,用的是自顶向下带备忘录的动态规划思路,我们当然也可以使用自底向上的迭代的动态规划思路,和我们的递归思路一样,关键是如何定义dp数组,我这里也写一下自底向上的解法吧:
自底向上的解法中dp数组定义的方式和我们的递归解法有一点差异,而且由于数组索引从 0 开始,有索引偏移,不过思路和我们的递归解法完全相同,如果你看懂了递归解法,这个解法应该不难理解。
另外,自底向上的解法可以通过我们前文讲过的 动态规划状态压缩技巧 来进行优化,把空间复杂度压缩为 O(N),这里由于篇幅所限,就不展开了
Last updated