416. Partition Equal Subset Sum (M)

https://leetcode.com/problems/partition-equal-subset-sum/

Given a non-empty array nums containing only positive integers, find if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal.

Example 1:

Input: nums = [1,5,11,5]
Output: true
Explanation: The array can be partitioned as [1, 5, 5] and [11].

Example 2:

Input: nums = [1,2,3,5]
Output: false
Explanation: The array cannot be partitioned into equal sum subsets.

Constraints:

  • 1 <= nums.length <= 200

  • 1 <= nums[i] <= 100

Solution:

对于这个问题,看起来和背包没有任何关系,为什么说它是背包问题呢?

首先回忆一下背包问题大致的描述是什么:

给你一个可装载重量为 W 的背包和 N 个物品,每个物品有重量和价值两个属性。其中第 i 个物品的重量为 wt[i],价值为 val[i],现在让你用这个背包装物品,最多能装的价值是多少?

那么对于这个问题,我们可以先对集合求和,得出 sum,把问题转化为背包问题:

给一个可装载重量为 sum / 2 的背包和 N 个物品,每个物品的重量为 nums[i]。现在让你装物品,是否存在一种装法,能够恰好将背包装满

你看,这就是背包问题的模型,甚至比我们之前的经典背包问题还要简单一些,下面我们就直接转换成背包问题,开始套前文讲过的背包问题框架即可。

二、解法分析

第一步要明确两点,「状态」和「选择」

这个前文 经典动态规划:背包问题 已经详细解释过了,状态就是「背包的容量」和「可选择的物品」,选择就是「装进背包」或者「不装进背包」。

第二步要明确 dp 数组的定义

按照背包问题的套路,可以给出如下定义:

dp[i][j] = x 表示,对于前 i 个物品,当前背包的容量为 j 时,若 xtrue,则说明可以恰好将背包装满,若 xfalse,则说明不能恰好将背包装满。

比如说,如果 dp[4][9] = true,其含义为:对于容量为 9 的背包,若只是用前 4 个物品,可以有一种方法把背包恰好装满。

或者说对于本题,含义是对于给定的集合中,若只对前 4 个数字进行选择,存在一个子集的和可以恰好凑出 9。

根据这个定义,我们想求的最终答案就是 dp[N][sum/2],base case 就是 dp[..][0] = truedp[0][..] = false,因为背包没有空间的时候,就相当于装满了,而当没有物品可选择的时候,肯定没办法装满背包。

第三步,根据「选择」,思考状态转移的逻辑

回想刚才的 dp 数组含义,可以根据「选择」对 dp[i][j] 得到以下状态转移:

如果不把 nums[i] 算入子集,或者说你不把这第 i 个物品装入背包,那么是否能够恰好装满背包,取决于上一个状态 dp[i-1][j],继承之前的结果。

如果把 nums[i] 算入子集,或者说你把这第 i 个物品装入了背包,那么是否能够恰好装满背包,取决于状态 dp[i-1][j-nums[i-1]]

首先,由于 i 是从 1 开始的,而数组索引是从 0 开始的,所以第 i 个物品的重量应该是 nums[i-1],这一点不要搞混。

dp[i - 1][j-nums[i-1]] 也很好理解:你如果装了第 i 个物品,就要看背包的剩余重量 j - nums[i-1] 限制下是否能够被恰好装满。

换句话说,如果 j - nums[i-1] 的重量可以被恰好装满,那么只要把第 i 个物品装进去,也可恰好装满 j 的重量;否则的话,重量 j 肯定是装不满的。

最后一步,把伪码翻译成代码,处理一些边界情况

以下是我的 C++ 代码,完全翻译了之前的思路,并处理了一些边界情况:

boolean canPartition(int[] nums) {
    int sum = 0;
    for (int num : nums) sum += num;
    // 和为奇数时,不可能划分成两个和相等的集合
    if (sum % 2 != 0) return false;
    int n = nums.length;
    sum = sum / 2;
    boolean[][] dp = new boolean[n + 1][sum + 1];
    // base case
    for (int i = 0; i <= n; i++)
        dp[i][0] = true;

    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= sum; j++) {
            if (j - nums[i - 1] < 0) {
                // 背包容量不足,不能装入第 i 个物品
                dp[i][j] = dp[i - 1][j];
            } else {
                // 装入或不装入背包
                dp[i][j] = dp[i - 1][j] || dp[i - 1][j - nums[i - 1]];
            }
        }
    }
    return dp[n][sum];
}

三、进一步优化

再进一步,是否可以优化这个代码呢?注意到 dp[i][j] 都是通过上一行 dp[i-1][..] 转移过来的,之前的数据都不会再使用了。

所以,我们可以 对动态规划进行降维打击,将二维 dp 数组压缩为一维,节约空间复杂度:

boolean canPartition(int[] nums) {
    int sum = 0;
    for (int num : nums) sum += num;
    // 和为奇数时,不可能划分成两个和相等的集合
    if (sum % 2 != 0) return false;
    int n = nums.length;
    sum = sum / 2;
    boolean[] dp = new boolean[sum + 1];
    
    // base case
    dp[0] = true;

    for (int i = 0; i < n; i++) {
        for (int j = sum; j >= 0; j--) {
            if (j - nums[i] >= 0) {
                dp[j] = dp[j] || dp[j - nums[i]];
            }
        }
    }
    return dp[sum];
}

其实这段代码和之前的解法思路完全相同,只在一行 dp 数组上操作,i 每进行一轮迭代,dp[j] 其实就相当于 dp[i-1][j],所以只需要一维数组就够用了。

唯一需要注意的是 j 应该从后往前反向遍历,因为每个物品(或者说数字)只能用一次,以免之前的结果影响其他的结果

至此,子集切割的问题就完全解决了,时间复杂度 O(n*sum),空间复杂度 O(sum)。

------------------------------------------------------------------------------

why j 应该从后往前反向遍历?

1.先看原来2D情况,dp[i][j]的值,都是仅依靠上一行dp[i-1][...]得出的。意思是我们要算当前dp[i]行的值,仅需要上一行dp[i-1]就好。所以可以将其转化为:原地更新1D数组问题;

2.现在考虑降为1D,定义该1D数组为int[] dp。回忆原来2D情况,dp[i][j]的值都是依靠“其正上方的值dp[i-1][j]+左上方的值dp[i-1][j-nums[i]]”来更新。那么如果对1D进行正向遍历即从dp[0]->dp[n-1]填充,对于某一位例如dp[cur]的更新,势必会用到dp[pre](pre<cur),因为是正向遍历,那么dp[pre]在当前轮次已经被更新过了,当在这种情况下计算的dp[cur]肯定不正确(其实说白了,就相当于2D情况下,使用了同一行的值。例如使用dp[i][j-nums[i]]来更新dp[i][j]);

3.现在解释对1D数组进行反向遍历即从dp[n-1]->dp[0]填充。同样,对于某一位例如dp[cur]的更新,势必会用到dp[pre](pre<cur)。但注意,因为是从后往前进行遍历的,此时dp[pre]在当前轮次未被更新,所以就相当于2D情况下使用的上一行的值,这样计算就是正确的了。

Last updated