322.Coin Change

1.Description(Medium)

You are given coins of different denominations and a total amount of moneyamount. Write a function to compute the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return-1.

Example 1: coins =[1, 2, 5], amount =11 return3(11 = 5 + 5 + 1)

Example 2: coins =[2], amount =3 return-1.

Note: You may assume that you have an infinite number of each kind of coin.

2.Code

function:f[i] 表示i个钱最少用f[i]个硬币能搞定

intial: f[0]=0;

      f\[i~amount\]=Integer.MAX\_VALUE;

记得判断i>coins[j]不然会越界。

 public int coinChange(int[] coins, int amount) {
        if(coins==null || coins.length==0){
            return -1;
        }
        Arrays.sort(coins);
        //state:
        int[] f=new int[amount+1];
        //Intial:
        f[0]=0;

        //funciton:
        for(int i=1;i<=amount;i++){
            f[i]=Integer.MAX_VALUE;
            for(int j=coins.length-1;j>=0;j--){
                if(i>=coins[j] && f[i-coins[j]]!=Integer.MAX_VALUE){
                    int current=f[i-coins[j]]+1;
                    f[i]=Math.min(current,f[i]);
                }
            }
        }

       //return:
       if(f[amount]==Integer.MAX_VALUE){
           return -1;
       }else{
           return f[amount];
       }

    }

先看下题目:给你 k 种面值的硬币,面值分别为 c1, c2 ... ck,每种硬币的数量无限,再给一个总金额 amount,问你最少需要几枚硬币凑出这个金额,如果不可能凑出,算法返回 -1 。算法的函数签名如下:

// coins 中是可选硬币面值,amount 是目标金额
int coinChange(int[] coins, int amount);

比如说 k = 3,面值分别为 1,2,5,总金额 amount = 11。那么最少需要 3 枚硬币凑出,即 11 = 5 + 5 + 1。

你认为计算机应该如何解决这个问题?显然,就是把所有可能的凑硬币方法都穷举出来,然后找找看最少需要多少枚硬币。

1、暴力递归

首先,这个问题是动态规划问题,因为它具有「最优子结构」的。要符合「最优子结构」,子问题间必须互相独立。啥叫相互独立?你肯定不想看数学证明,我用一个直观的例子来讲解。

比如说,假设你考试,每门科目的成绩都是互相独立的。你的原问题是考出最高的总成绩,那么你的子问题就是要把语文考到最高,数学考到最高…… 为了每门课考到最高,你要把每门课相应的选择题分数拿到最高,填空题分数拿到最高…… 当然,最终就是你每门课都是满分,这就是最高的总成绩。

得到了正确的结果:最高的总成绩就是总分。因为这个过程符合最优子结构,“每门科目考到最高”这些子问题是互相独立,互不干扰的。

但是,如果加一个条件:你的语文成绩和数学成绩会互相制约,数学分数高,语文分数就会降低,反之亦然。这样的话,显然你能考到的最高总成绩就达不到总分了,按刚才那个思路就会得到错误的结果。因为子问题并不独立,语文数学成绩无法同时最优,所以最优子结构被破坏。

回到凑零钱问题,为什么说它符合最优子结构呢?比如你想求 amount = 11 时的最少硬币数(原问题),如果你知道凑出 amount = 10 的最少硬币数(子问题),你只需要把子问题的答案加一(再选一枚面值为 1 的硬币)就是原问题的答案。因为硬币的数量是没有限制的,所以子问题之间没有相互制,是互相独立的。

PS:关于最优子结构的问题,后文 动态规划答疑篇 还会再举例探讨。

那么,既然知道了这是个动态规划问题,就要思考如何列出正确的状态转移方程

1、确定 base case,这个很简单,显然目标金额 amount 为 0 时算法返回 0,因为不需要任何硬币就已经凑出目标金额了。

2、确定「状态」,也就是原问题和子问题中会变化的变量。由于硬币数量无限,硬币的面额也是题目给定的,只有目标金额会不断地向 base case 靠近,所以唯一的「状态」就是目标金额 amount

3、确定「选择」,也就是导致「状态」产生变化的行为。目标金额为什么变化呢,因为你在选择硬币,你每选择一枚硬币,就相当于减少了目标金额。所以说所有硬币的面值,就是你的「选择」。

4、明确 dp 函数/数组的定义。我们这里讲的是自顶向下的解法,所以会有一个递归的 dp 函数,一般来说函数的参数就是状态转移中会变化的量,也就是上面说到的「状态」;函数的返回值就是题目要求我们计算的量。就本题来说,状态只有一个,即「目标金额」,题目要求我们计算凑出目标金额所需的最少硬币数量。所以我们可以这样定义 dp 函数:

dp(n) 的定义:输入一个目标金额 n,返回凑出目标金额 n 的最少硬币数量。

搞清楚上面这几个关键点,解法的伪码就可以写出来了:

// 伪码框架
int coinChange(int[] coins, int amount) {
    // 题目要求的最终结果是 dp(amount)
    return dp(coins, amount)
}

// 定义:要凑出金额 n,至少要 dp(coins, n) 个硬币
int dp(int[] coins, int n) {
    // 做选择,选择需要硬币最少的那个结果
    for (int coin : coins) {
        res = min(res, 1 + dp(n - coin))
    }
    return res
}

根据伪码,我们加上 base case 即可得到最终的答案。显然目标金额为 0 时,所需硬币数量为 0;当目标金额小于 0 时,无解,返回 -1:

int coinChange(int[] coins, int amount) {
    // 题目要求的最终结果是 dp(amount)
    return dp(coins, amount)
}

int dp(int[] coins, int amount) {
    // base case
    if (amount == 0) return 0;
    if (amount < 0) return -1;

    int res = Integer.MAX_VALUE;
    for (int coin : coins) {
        // 计算子问题的结果
        int subProblem = dp(coins, amount - coin);
        // 子问题无解则跳过
        if (subProblem == -1) continue;
        // 在子问题中选择最优解,然后加一
        res = Math.min(res, subProblem + 1);
    }

    return res == Integer.MAX_VALUE ? -1 : res;
}

PS:这里 coinChangedp 函数的签名完全一样,所以理论上不需要额外写一个 dp 函数。但为了后文讲解方便,这里还是另写一个 dp 函数来实现主要逻辑。

另外,我经常看到有人问,子问题的结果为什么要加 1(subProblem + 1),而不是加硬币金额之类的。我这里统一提示一下,动态规划问题的关键是 dp 函数/数组的定义,你这个函数的返回值代表什么?你回过头去搞清楚这一点,然后就知道为什么要给子问题的返回值加一了。

至此,状态转移方程其实已经完成了,以上算法已经是暴力解法了,以上代码的数学形式就是状态转移方程:

至此,这个问题其实就解决了,只不过需要消除一下重叠子问题,比如 amount = 11, coins = {1,2,5} 时画出递归树看看:

递归算法的时间复杂度分析:子问题总数 x 每个子问题的时间

子问题总数为递归树节点个数,这个比较难看出来,是 O(n^k),总之是指数级别的。每个子问题中含有一个 for 循环,复杂度为 O(k)。所以总时间复杂度为 O(k * n^k),指数级别。

2、带备忘录的递归

类似之前斐波那契数列的例子,只需要稍加修改,就可以通过备忘录消除子问题:

int[] memo;

int coinChange(int[] coins, int amount) {
    memo = new int[amount + 1];
    // dp 数组全都初始化为特殊值
    Arrays.fill(memo, -666);

    return dp(coins, amount);
}

int dp(int[] coins, int amount) {
    if (amount == 0) return 0;
    if (amount < 0) return -1;
    // 查备忘录,防止重复计算
    if (memo[amount] != -666)
        return memo[amount];

    int res = Integer.MAX_VALUE;
    for (int coin : coins) {
        // 计算子问题的结果
        int subProblem = dp(coins, amount - coin);
        // 子问题无解则跳过
        if (subProblem == -1) continue;
        // 在子问题中选择最优解,然后加一
        res = Math.min(res, subProblem + 1);
    }
    // 把计算结果存入备忘录
    memo[amount] = (res == Integer.MAX_VALUE) ? -1 : res;
    return memo[amount];
}

不画图了,很显然「备忘录」大大减小了子问题数目,完全消除了子问题的冗余,所以子问题总数不会超过金额数 n,即子问题数目为 O(n)。处理一个子问题的时间不变,仍是 O(k),所以总的时间复杂度是 O(kn)。

3、dp 数组的迭代解法

当然,我们也可以自底向上使用 dp table 来消除重叠子问题,关于「状态」「选择」和 base case 与之前没有区别,dp 数组的定义和刚才 dp 函数类似,也是把「状态」,也就是目标金额作为变量。不过 dp 函数体现在函数参数,而 dp 数组体现在数组索引:

dp 数组的定义:当目标金额为 i 时,至少需要 dp[i] 枚硬币凑出

根据我们文章开头给出的动态规划代码框架可以写出如下解法:

int coinChange(int[] coins, int amount) {
    int[] dp = new int[amount + 1];
    // 数组大小为 amount + 1,初始值也为 amount + 1
    Arrays.fill(dp, amount + 1);

    // base case
    dp[0] = 0;
    // 外层 for 循环在遍历所有状态的所有取值
    for (int i = 0; i < dp.length; i++) {
        // 内层 for 循环在求所有选择的最小值
        for (int coin : coins) {
            // 子问题无解,跳过
            if (i - coin < 0) {
                continue;
            }
            dp[i] = Math.min(dp[i], 1 + dp[i - coin]);
        }
    }
    return (dp[amount] == amount + 1) ? -1 : dp[amount];
}

PS:为啥 dp 数组初始化为 amount + 1 呢,因为凑成 amount 金额的硬币数最多只可能等于 amount(全用 1 元面值的硬币),所以初始化为 amount + 1 就相当于初始化为正无穷,便于后续取最小值。为啥不直接初始化为 int 型的最大值 Integer.MAX_VALUE 呢?因为后面有 dp[i - coin] + 1,这就会导致整型溢出。

Last updated