240. Search a 2D Matrix II
Write an efficient algorithm that searches for a value target in an m x n integer matrix matrix. This matrix has the following properties:
Integers in each row are sorted in ascending from left to right.
Integers in each column are sorted in ascending from top to bottom.
Example 1:

Input: matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
Output: trueExample 2:

Input: matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20
Output: false
Constraints:
m == matrix.lengthn == matrix[i].length1 <= n, m <= 300-109 <= matrix[i][j] <= 109All the integers in each row are sorted in ascending order.
All the integers in each column are sorted in ascending order.
-109 <= target <= 109
Solution:
Version 1:
一定要先target到row, 再找column, 反向的话会有错.
test case
[[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15],[16,17,18,19,20],[21,22,23,24,25]]
19
当锁定了row number之后,要在0- row之前的每一行都搜索,
[[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]]
5
Version 2:
根据题意,每行中的整数从左到右是排序的,每一列的整数从上到下是排序的,在每一行或每一列中没有重复的整数。那么我们只要从矩阵的左下角开始向右上角找,若是小于target就往右找,若是大于target就往上找
从左下角即
(n-1,0)处出发如果
matrix[x][y]<target下一步往右搜如果
matrix[x][y]>target下一步往上搜如果
matrix[x][y]=target下一步往[x-1][y+1]即右上角搜,因为是有序的,每一行每一列中每个数都是唯一的
复杂度分析
时间复杂度
O(n+m)左下角往右上角呈阶梯状走,长度为n+m
空间复杂度
O(size(matrix))地图的大小
Last updated
Was this helpful?