240. Search a 2D Matrix II
Write an efficient algorithm that searches for a value target in an m x n integer matrix matrix. This matrix has the following properties:
- Integers in each row are sorted in ascending from left to right. 
- Integers in each column are sorted in ascending from top to bottom. 
Example 1:

Input: matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
Output: trueExample 2:

Input: matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20
Output: false
Constraints:
- m == matrix.length
- n == matrix[i].length
- 1 <= n, m <= 300
- -109 <= matrix[i][j] <= 109
- All the integers in each row are sorted in ascending order. 
- All the integers in each column are sorted in ascending order. 
- -109 <= target <= 109
Solution:
Version 1:
一定要先target到row, 再找column, 反向的话会有错.
test case
[[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15],[16,17,18,19,20],[21,22,23,24,25]]
19
当锁定了row number之后,要在0- row之前的每一行都搜索,
[[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]]
5
class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        
        int m = matrix.length;
        int n = matrix[0].length;
        
        int start = 0;
        int end = m-1;
        int firstRowIndex = 0;
        
        while(start+1 < end)
        {
            int mid = start + (end-start)/2;
            if(target == matrix[mid][0])
            {
                return true;
            }
            else if(target > matrix[mid][0])
            {
                start = mid;
            }
            else if(target < matrix[mid][0])
            {
                end = mid;
            }
        }
        
        if(matrix[end][0] <= target)
        {
            firstRowIndex = end;
        }
        else if(matrix[start][0] <= target)
        {
            firstRowIndex = start;
        }
        
        for(int i = 0; i<= firstRowIndex; i++)
        {
            start = 0;
            end = n-1;
            while(start + 1 < end)
            {
                int mid = start + (end-start)/2;
                if(target == matrix[i][mid])
                {
                    return true;
                }
                else if(target > matrix[i][mid])
                {
                    start = mid;
                }
                else if(target < matrix[i][mid])
                {
                    end = mid;
                }
            }
            if(matrix[i][end] == target)
            {
                return true;
            }
            else if(matrix[i][start] == target)
            {
                return true;
            }
        }
    
        return false;  
    }
}Version 2:
根据题意,每行中的整数从左到右是排序的,每一列的整数从上到下是排序的,在每一行或每一列中没有重复的整数。那么我们只要从矩阵的左下角开始向右上角找,若是小于target就往右找,若是大于target就往上找
- 从左下角即 - (n-1,0)处出发
- 如果 - matrix[x][y]<- target下一步往右搜
- 如果 - matrix[x][y]>- target下一步往上搜
- 如果 - matrix[x][y]=- target下一步往- [x-1][y+1]即右上角搜,因为是有序的,每一行每一列中每个数都是唯一的
复杂度分析
- 时间复杂度 - O(n+m)- 左下角往右上角呈阶梯状走,长度为n+m 
 
- 空间复杂度 - O(size(matrix))- 地图的大小 
 
public boolean searchMatrix(int[][] matrix, int target) {
        
        int m = matrix.length;
        int n = matrix[0].length;
        
        int x = m-1;
        int y = 0;
        
        while(x>=0 && y<n)
        {
            if(matrix[x][y] == target)
            {
                return true;
            }
            else if(matrix[x][y] > target)
            {
                x--;
            }
            else if(matrix[x][y] < target)
            {
                y++;
            }
        }
        return false;
       
    }
Last updated
Was this helpful?