232. Implement Queue using Stacks (E)

https://leetcode.com/problems/implement-queue-using-stacks/

Implement a first in first out (FIFO) queue using only two stacks. The implemented queue should support all the functions of a normal queue (push, peek, pop, and empty).

Implement the MyQueue class:

  • void push(int x) Pushes element x to the back of the queue.

  • int pop() Removes the element from the front of the queue and returns it.

  • int peek() Returns the element at the front of the queue.

  • boolean empty() Returns true if the queue is empty, false otherwise.

Notes:

  • You must use only standard operations of a stack, which means only push to top, peek/pop from top, size, and is empty operations are valid.

  • Depending on your language, the stack may not be supported natively. You may simulate a stack using a list or deque (double-ended queue) as long as you use only a stack's standard operations.

Example 1:

Input
["MyQueue", "push", "push", "peek", "pop", "empty"]
[[], [1], [2], [], [], []]
Output
[null, null, null, 1, 1, false]

Explanation
MyQueue myQueue = new MyQueue();
myQueue.push(1); // queue is: [1]
myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
myQueue.peek(); // return 1
myQueue.pop(); // return 1, queue is [2]
myQueue.empty(); // return false

Constraints:

  • 1 <= x <= 9

  • At most 100 calls will be made to push, pop, peek, and empty.

  • All the calls to pop and peek are valid.

Follow-up: Can you implement the queue such that each operation is amortized O(1) time complexity? In other words, performing n operations will take overall O(n) time even if one of those operations may take longer

Challenge

implement it by two stacks, do not use any other data structure and push, pop and top should be O(1) by AVERAGE.

2.Code

首先,队列的 API 如下:

class MyQueue {
    
    /** 添加元素到队尾 */
    public void push(int x);
    
    /** 删除队头的元素并返回 */
    public int pop();
    
    /** 返回队头元素 */
    public int peek();
    
    /** 判断队列是否为空 */
    public boolean empty();
}

我们使用两个栈 s1, s2 就能实现一个队列的功能(这样放置栈可能更容易理解):

class MyQueue {
    private Stack<Integer> s1, s2;
    
    public MyQueue() {
        s1 = new Stack<>();
        s2 = new Stack<>();
    }
    // ...
}

当调用 push 让元素入队时,只要把元素压入 s1 即可,比如说 push 进 3 个元素分别是 1,2,3,那么底层结构就是这样:

/** 添加元素到队尾 */
public void push(int x) {
    s1.push(x);
}

那么如果这时候使用 peek 查看队头的元素怎么办呢?按道理队头元素应该是 1,但是在 s1 中 1 被压在栈底,现在就要轮到 s2 起到一个中转的作用了:当 s2 为空时,可以把 s1 的所有元素取出再添加进 s2这时候 s2 中元素就是先进先出顺序了

/** 返回队头元素 */
public int peek() {
    if (s2.isEmpty())
        // 把 s1 元素压入 s2
        while (!s1.isEmpty())
            s2.push(s1.pop());
    return s2.peek();
}

同理,对于 pop 操作,只要操作 s2 就可以了。

/** 删除队头的元素并返回 */
public int pop() {
    // 先调用 peek 保证 s2 非空
    peek();
    return s2.pop();
}

最后,如何判断队列是否为空呢?如果两个栈都为空的话,就说明队列为空:

/** 判断队列是否为空 */
public boolean empty() {
    return s1.isEmpty() && s2.isEmpty();
}

至此,就用栈结构实现了一个队列,核心思想是利用两个栈互相配合。

值得一提的是,这几个操作的时间复杂度是多少呢?有点意思的是 peek 操作,调用它时可能触发 while 循环,这样的话时间复杂度是 O(N),但是大部分情况下 while 循环不会被触发,时间复杂度是 O(1)。由于 pop 操作调用了 peek,它的时间复杂度和 peek 相同。

像这种情况,可以说它们的最坏时间复杂度是 O(N),因为包含 while 循环,可能需要从 s1s2 搬移元素。

但是它们的均摊时间复杂度是 O(1),这个要这么理解:对于一个元素,最多只可能被搬运一次,也就是说 peek 操作平均到每个元素的时间复杂度是 O(1)。

Version 2:

class MyQueue {
    Stack<Integer> temp=new Stack<Integer>();
	Stack<Integer> value=new Stack<Integer>();
	
	 // Push element x to the back of queue.
    public void push(int x) {
    	
    	if(value.isEmpty())
    	{
    		value.push(x);
    	}
    	else
    	{
    		while(!value.isEmpty())
    		{
    			int tempnum=value.pop();
    			temp.push(tempnum);    			
    		}
    		value.push(x);
    		while(!temp.isEmpty())
    		{
    			int tempnum=temp.pop();
    			value.push(tempnum);
    		}
    	}       
    }


    
    // Removes the element from in front of queue.
    public void pop() {
    	
    	value.pop();
        
    }

    // Get the front element.
    public int peek()
    {
    	
    	return value.peek();
        
    }

    // Return whether the queue is empty.
    public boolean empty() 
    {    	
       return value.isEmpty(); 
    }
}

Last updated