二分图判定
https://labuladong.github.io/algo/2/19/36/
Last updated
https://labuladong.github.io/algo/2/19/36/
Last updated
在讲二分图的判定算法之前,我们先来看下百度百科对「二分图」的定义:
二分图的顶点集可分割为两个互不相交的子集,图中每条边依附的两个顶点都分属于这两个子集,且两个子集内的顶点不相邻。
其实图论里面很多术语的定义都比较拗口,不容易理解。我们甭看这个死板的定义了,来玩个游戏吧:
给你一幅「图」,请你用两种颜色将图中的所有顶点着色,且使得任意一条边的两个端点的颜色都不相同,你能做到吗?
这就是图的「双色问题」,其实这个问题就等同于二分图的判定问题,如果你能够成功地将图染色,那么这幅图就是一幅二分图,反之则不是:
在具体讲解二分图判定算法之前,我们先来说说计算机大佬们闲着无聊解决双色问题的目的是什么。
首先,二分图作为一种特殊的图模型,会被很多高级图算法(比如最大流算法)用到,不过这些高级算法我们不是特别有必要去掌握,有兴趣的读者可以自行搜索。
从简单实用的角度来看,二分图结构在某些场景可以更高效地存储数据。
比如前文 介绍《算法 4》 文章中的例子,如何存储电影演员和电影之间的关系?
如果用哈希表存储,需要两个哈希表分别存储「每个演员到电影列表」的映射和「每部电影到演员列表」的映射。
但如果用「图」结构存储,将电影和参演的演员连接,很自然地就成为了一幅二分图:
每个电影节点的相邻节点就是参演该电影的所有演员,每个演员的相邻节点就是该演员参演过的所有电影,非常方便直观。
类比这个例子,其实生活中不少实体的关系都能自然地形成二分图结构,所以在某些场景下图结构也可以作为存储键值对的数据结构(符号表)。
好了,接下来进入正题,说说如何判定一幅图是否是二分图。
判定二分图的算法很简单,就是用代码解决「双色问题」。
说白了就是遍历一遍图,一边遍历一边染色,看看能不能用两种颜色给所有节点染色,且相邻节点的颜色都不相同。
既然说到遍历图,也不涉及最短路径之类的,当然是 DFS 算法和 BFS 皆可了,DFS 算法相对更常用些,所以我们先来看看如何用 DFS 算法判定双色图。
首先,基于 学习数据结构和算法的框架思维 写出图的遍历框架:
因为图中可能存在环,所以用 visited
数组防止走回头路。
这里可以看到我习惯把 return 语句都放在函数开头,因为一般 return 语句都是 base case,集中放在一起可以让算法结构更清晰。
其实,如果你愿意,也可以把 if 判断放到其它地方,比如图遍历框架可以稍微改改:
这种写法把对 visited
的判断放到递归调用之前,和之前的写法唯一的不同就是,你需要保证调用 traverse(v)
的时候,visited[v] == false
。
为什么要特别说这种写法呢?因为我们判断二分图的算法会用到这种写法。
回顾一下二分图怎么判断,其实就是让 traverse
函数一边遍历节点,一边给节点染色,尝试让每对相邻节点的颜色都不一样。
所以,判定二分图的代码逻辑可以这样写:
如果你能看懂上面这段代码,就能写出二分图判定的具体代码了,接下来看LeetCode 785。886