拓扑排序

https://labuladong.github.io/algo/2/19/35/

拓扑排序算法:DAG

有向图-->不能有环-->有可能为0个(有相互依赖)

所以,不是所有的有向图都能够被拓扑排序,因为它中间存在互相依赖的关系,从而无法确定谁先谁后。在有向图中,这种情况被描述为存在环路。因此,一个有向图能被拓扑排序的充要条件就是它是一个有向无环图(DAG:Directed Acyclic Graph)

图的三种表示方式:边表示法,邻接表法,邻接矩阵。用邻接表存储图比较方便寻找入度为0的节点。

BFS解法:能否找到一个有向数列 (Leetcode 207)

在一个有向图中,每次找到一个没有前驱节点的节点(也就是入度为0的节点),然后把它指向其他节点的边都去掉,重复这个过程(BFS),直到所有节点已被找到,或者没有符合条件的节点(如果图中有环存在)。

  • 统计所有点的入度(建立入度数组)

  • 把所有入度=0的点放入队列

  • 从这个队列开始BFS

  • 然后开始遍历队列,从graph里遍历其连接的点,每到达一个新节点,将其入度减一,如果此时该点入度为0,则放入队列末尾。

  • 直到遍历完队列中所有的值,若此时还有节点的入度不为0,则说明环存在,返回false,反之则返回true

如果你能看懂 BFS 版本的环检测算法,那么就很容易得到 BFS 版本的拓扑排序算法,因为节点的遍历顺序就是拓扑排序的结果

比如刚才举的第一个例子,下图每个节点中的值即入队的顺序:

Image

显然,这个顺序就是一个可行的拓扑排序结果。

所以,我们稍微修改一下 BFS 版本的环检测算法,记录节点的遍历顺序即可得到拓扑排序的结果:

// 主函数
public int[] findOrder(int numCourses, int[][] prerequisites) {
    // 建图,和环检测算法相同
    List<Integer>[] graph = buildGraph(numCourses, prerequisites);
    // 计算入度,和环检测算法相同
    int[] indgree = new int[numCourses];
    for (int[] edge : prerequisites) {
        int from = edge[1], to = edge[0];
        indgree[to]++;
    }

    // 根据入度初始化队列中的节点,和环检测算法相同
    Queue<Integer> q = new LinkedList<>();
    for (int i = 0; i < numCourses; i++) {
        if (indgree[i] == 0) {
            q.offer(i);
        }
    }

    // 记录拓扑排序结果
    int[] res = new int[numCourses];
    // 记录遍历节点的顺序(索引)
    int count = 0;
    // 开始执行 BFS 算法
    while (!q.isEmpty()) {
        int cur = q.poll();
        // 弹出节点的顺序即为拓扑排序结果
        res[count] = cur;
        count++;
        for (int next : graph[cur]) {
            indgree[next]--;
            if (indgree[next] == 0) {
                q.offer(next);
            }
        }
    }

    if (count != numCourses) {
        // 存在环,拓扑排序不存在
        return new int[]{};
    }

    return res;
}

// 建图函数
List<Integer>[] buildGraph(int n, int[][] edges) {
    // 见前文
}

按道理,图的遍历 都需要 visited 数组防止走回头路,这里的 BFS 算法其实是通过 indegree 数组实现的 visited 数组的作用,只有入度为 0 的节点才能入队,从而保证不会出现死循环。

好了,到这里环检测算法、拓扑排序算法的 BFS 实现也讲完了,继续留一个思考题:

对于 BFS 的环检测算法,如果问你形成环的节点具体是哪些,你应该如何实现呢?

DFS解法: 图的遍历算法 , visited onPath 数组 , 加一个hasCircle的全局布尔 (Leetcode 207,210)

拓扑排序(Topological Sorting)这个名词,网上搜出来的定义很数学,这里干脆用百度百科的一幅图来让你直观地感受下:

直观地说就是,让你把一幅图「拉平」,而且这个「拉平」的图里面,所有箭头方向都是一致的,比如上图所有箭头都是朝右的。

很显然,如果一幅有向图中存在环,是无法进行拓扑排序的,因为肯定做不到所有箭头方向一致;反过来,如果一幅图是「有向无环图」,那么一定可以进行拓扑排序。

但是我们这道题和拓扑排序有什么关系呢?

其实也不难看出来,如果把课程抽象成节点,课程之间的依赖关系抽象成有向边,那么这幅图的拓扑排序结果就是上课顺序

首先,我们先判断一下题目输入的课程依赖是否成环,成环的话是无法进行拓扑排序的,所以我们可以复用上一道题的主函数:

public int[] findOrder(int numCourses, int[][] prerequisites) {
    if (!canFinish(numCourses, prerequisites)) {
        // 不可能完成所有课程
        return new int[]{};
    }
    // ...
}

那么关键问题来了,如何进行拓扑排序?是不是又要秀什么高大上的技巧了?

其实特别简单,将后序遍历的结果进行反转,就是拓扑排序的结果

PS:有的读者提到,他在网上看到的拓扑排序算法不用对后序遍历结果进行反转,这是为什么呢?

你确实可以看到这样的解法,原因是他建图的时候对边的定义和我不同。我建的图中箭头方向是「被依赖」关系,比如节点 1 指向 2,含义是节点 1 被节点 2 依赖,即做完 1 才能去做 2

如果你反过来,把有向边定义为「依赖」关系,那么整幅图中边全部反转,就可以不对后序遍历结果反转。具体来说,就是把我的解法代码中 graph[from].add(to); 改成 graph[to].add(from); 就可以不反转了。

不过呢,现实中一般都是从初级任务指向进阶任务,所以像我这样把边定义为「被依赖」关系可能比较符合我们的认知习惯

直接看解法代码吧,在上一题环检测的代码基础上添加了记录后序遍历结果的逻辑:

// 记录后序遍历结果
List<Integer> postorder = new ArrayList<>();
// 记录是否存在环
boolean hasCycle = false;
boolean[] visited, onPath;

// 主函数
public int[] findOrder(int numCourses, int[][] prerequisites) {
    List<Integer>[] graph = buildGraph(numCourses, prerequisites);
    visited = new boolean[numCourses];
    onPath = new boolean[numCourses];
    // 遍历图
    for (int i = 0; i < numCourses; i++) {
        traverse(graph, i);
    }
    // 有环图无法进行拓扑排序
    if (hasCycle) {
        return new int[]{};
    }
    // 逆后序遍历结果即为拓扑排序结果
    Collections.reverse(postorder);
    int[] res = new int[numCourses];
    for (int i = 0; i < numCourses; i++) {
        res[i] = postorder.get(i);
    }
    return res;
}

// 图遍历函数
void traverse(List<Integer>[] graph, int s) {
    if (onPath[s]) {
        // 发现环
        hasCycle = true;
    }
    if (visited[s] || hasCycle) {
        return;
    }
    // 前序遍历位置
    onPath[s] = true;
    visited[s] = true;
    for (int t : graph[s]) {
        traverse(graph, t);
    }
    // 后序遍历位置
    postorder.add(s);
    onPath[s] = false;
}

// 建图函数
List<Integer>[] buildGraph(int numCourses, int[][] prerequisites) {
    // 图中共有 numCourses 个节点
    List<Integer>[] graph = new LinkedList[numCourses];
    for (int i = 0; i < numCourses; i++) {
        graph[i] = new LinkedList<>();
    }
    for (int[] edge : prerequisites) {
        int from = edge[1];
        int to = edge[0];
        // 修完课程 from 才能修课程 to
        // 在图中添加一条从 from 指向 to 的有向边
        graph[from].add(to);
    }
    return graph;
}

代码虽然看起来多,但是逻辑应该是很清楚的,只要图中无环,那么我们就调用 traverse 函数对图进行 DFS 遍历,记录后序遍历结果,最后把后序遍历结果反转,作为最终的答案。

那么为什么后序遍历的反转结果就是拓扑排序呢

我这里也避免数学证明,用一个直观地例子来解释,我们就说二叉树,这是我们说过很多次的二叉树遍历框架:

void traverse(TreeNode root) {
    // 前序遍历代码位置
    traverse(root.left)
    // 中序遍历代码位置
    traverse(root.right)
    // 后序遍历代码位置
}

二叉树的后序遍历是什么时候?遍历完左右子树之后才会执行后序遍历位置的代码。换句话说,当左右子树的节点都被装到结果列表里面了,根节点才会被装进去。

后序遍历的这一特点很重要,之所以拓扑排序的基础是后序遍历,是因为一个任务必须在等到所有的依赖任务都完成之后才能开始开始执行

你把每个任务理解成二叉树里面的节点,这个任务所依赖的任务理解成子节点,那你是不是应该先把所有子节点处理完再处理父节点?这是不是就是后序遍历?

再说一说为什么还要把后序遍历结果反转,才是最终的拓扑排序结果。

我们说一个节点可以理解为一个任务,这个节点的子节点理解为这个任务的依赖,但你注意我们之前说的依赖关系的表示:如果做完 A 才能去做 B,那么就有一条从 A 指向 B 的有向边,表示 B 依赖 A

那么,父节点依赖子节点,体现在二叉树里面应该是这样的:

是不是和我们正常的二叉树指针指向反过来了?所以正常的后序遍历结果应该进行反转,才是拓扑排序的结果

以上,我简单解释了一下为什么「拓扑排序的结果就是反转之后的后序遍历结果」,当然,我的解释虽然比较直观,但并没有严格的数学证明,有兴趣的读者可以自己查一下。

总之,你记住

  1. 拓扑排序就是后序遍历反转之后的结果,

  2. 拓扑排序只能针对有向无环图 (DAG)

  3. 进行拓扑排序之前要进行环检测 (hasCycle)

这些知识点已经足够了。

_

Last updated

Was this helpful?