Backpack I~VI
1.(92)Backpack I(单次选择+最大体积)
Given_n_items with size Ai, an integer_m_denotes the size of a backpack. How full you can fill this backpack?
Notice
You can not divide any item into small pieces.
Example
If we have4
items with size[2, 3, 5, 7]
, the backpack size is 11, we can select[2, 3, 5]
, so that the max size we can fill this backpack is10
. If the backpack size is12
. we can select[2, 3, 7]
so that we can fulfill the backpack.
You function should return the max size we can fill in the given backpack.
O(n x m) time and O(m) memory.
O(n x m) memory is also acceptable if you do not know how to optimize memory.
Code
动规经典题目,用数组dp[i]表示书包空间为i的时候能装的A物品最大容量。两次循环,外部遍历数组A,内部反向遍历数组dp,若j即背包容量大于等于物品体积A[i],则取前i-1次循环求得的最大容量dp[j],和背包体积为j-A[i]时的最大容量dp[j-A[i]]与第i个物品体积A[i]之和即dp[j-A[i]]+A[i]的较大值,作为本次循环后的最大容量dp[i]。
注意dp[]的空间要给m+1,因为我们要求的是第m+1个值dp[m],否则会抛出OutOfBoundException。
2.(125)Backpack II (单次选择+最大价值)
Givenn_items with size Aiand value Vi, and a backpack with size_m. What's the maximum value can you put into the backpack?
Notice
You cannot divide item into small pieces and the total size of items you choose should smaller or equal to m.
Example
Given 4 items with size[2, 3, 5, 7]
and value[1, 5, 2, 4]
, and a backpack with size10
. The maximum value is9
.
O(n x m) memory is acceptable, can you do it in O(m) memory?
Code
和BackPack I基本一致。依然是以背包空间为限制条件,所不同的是dp[j]取的是价值较大值,而非体积较大值。所以只要把dp[j-A[i]]+A[i]换成dp[j-A[i]]+V[i]就可以了。
Last updated