123. Best Time to Buy and Sell Stock III (H)

You are given an array prices where prices[i] is the price of a given stock on the ith day.

Find the maximum profit you can achieve. You may complete at most two transactions.

Note: You may not engage in multiple transactions simultaneously (i.e., you must sell the stock before you buy again).

Example 1:

Input: prices = [3,3,5,0,0,3,1,4]
Output: 6
Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.

Example 2:

Input: prices = [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are engaging multiple transactions at the same time. You must sell before buying again.

Example 3:

Input: prices = [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.

Constraints:

  • 1 <= prices.length <= 105

  • 0 <= prices[i] <= 105

Solution:

k = 2 和前面题目的情况稍微不同,因为上面的情况都和 k 的关系不太大。要么 k 是正无穷,状态转移和 k 没关系了;要么 k = 1,跟 k = 0 这个 base case 挨得近,最后也没有存在感。

这道题 k = 2 和后面要讲的 k 是任意正整数的情况中,对 k 的处理就凸显出来了。我们直接写代码,边写边分析原因。

原始的状态转移方程,没有可化简的地方
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])

按照之前的代码,我们可能想当然这样写代码(错误的):

int k = 2;
int[][][] dp = new int[n][k + 1][2];
for (int i = 0; i < n; i++) {
    if (i - 1 == -1) {
        // 处理 base case
        dp[i][k][0] = 0;
        dp[i][k][1] = -prices[i];
        continue;
    }
    dp[i][k][0] = Math.max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]);
    dp[i][k][1] = Math.max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]);
}
return dp[n - 1][k][0];

为什么错误?我这不是照着状态转移方程写的吗?

还记得前面总结的「穷举框架」吗?就是说我们必须穷举所有状态。其实我们之前的解法,都在穷举所有状态,只是之前的题目中 k 都被化简掉了。

比如说第一题,k = 1 时的代码框架:

int n = prices.length;
int[][] dp = new int[n][2];
for (int i = 0; i < n; i++) {
    dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);
    dp[i][1] = Math.max(dp[i-1][1], -prices[i]);
}
return dp[n - 1][0];

但当 k = 2 时,由于没有消掉 k 的影响,所以必须要对 k 进行穷举:

// 原始版本
int maxProfit_k_2(int[] prices) {
    int max_k = 2, n = prices.length;
    int[][][] dp = new int[n][max_k + 1][2];
    for (int i = 0; i < n; i++) {
        for (int k = max_k; k >= 1; k--) {
            if (i - 1 == -1) {
                // 处理 base case
                dp[i][k][0] = 0;
                dp[i][k][1] = -prices[i];
                continue;
            }
            dp[i][k][0] = Math.max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]);
            dp[i][k][1] = Math.max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]);
        }
    }
    // 穷举了 n × max_k × 2 个状态,正确。
    return dp[n - 1][max_k][0];
}

PS:这里肯定会有读者疑惑,k 的 base case 是 0,按理说应该从 k = 1, k++ 这样穷举状态 k 才对?而且如果你真的这样从小到大遍历 k,提交发现也是可以的

这个疑问很正确,因为我们前文 动态规划答疑篇 有介绍 dp 数组的遍历顺序是怎么确定的,主要是根据 base case,以 base case 为起点,逐步向结果靠近。

但为什么我从大到小遍历 k 也可以正确提交呢?因为你注意看,dp[i][k] 不会依赖 dp[i][k - 1],而是依赖 dp[i - 1][k - 1],对于 dp[i - 1][...],都是已经计算出来的。所以不管你是 k = max_k, k--,还是 k = 1, k++,都是可以得出正确答案的。

那为什么我使用 k = max_k, k-- 的方式呢?因为这样符合语义。

你买股票,初始的「状态」是什么?应该是从第 0 天开始,而且还没有进行过买卖,所以最大交易次数限制 k 应该是 max_k;而随着「状态」的推移,你会进行交易,那么交易次数上限 k 应该不断减少,这样一想,k = max_k, k-- 的方式是比较合乎实际场景的。

当然,这里 k 取值范围比较小,所以可以不用 for 循环,直接把 k = 1 和 2 的情况全部列举出来也可以:

// 状态转移方程:
// dp[i][2][0] = max(dp[i-1][2][0], dp[i-1][2][1] + prices[i])
// dp[i][2][1] = max(dp[i-1][2][1], dp[i-1][1][0] - prices[i])
// dp[i][1][0] = max(dp[i-1][1][0], dp[i-1][1][1] + prices[i])
// dp[i][1][1] = max(dp[i-1][1][1], -prices[i])

// 空间复杂度优化版本
int maxProfit_k_2(int[] prices) {
    // base case
    int dp_i10 = 0, dp_i11 = Integer.MIN_VALUE;
    int dp_i20 = 0, dp_i21 = Integer.MIN_VALUE;
    for (int price : prices) {
        dp_i20 = Math.max(dp_i20, dp_i21 + price);
        dp_i21 = Math.max(dp_i21, dp_i10 - price);
        dp_i10 = Math.max(dp_i10, dp_i11 + price);
        dp_i11 = Math.max(dp_i11, -price);
    }
    return dp_i20;
}

有状态转移方程和含义明确的变量名指导,相信你很容易看懂。其实我们可以故弄玄虚,把上述四个变量换成 a, b, c, d。这样当别人看到你的代码时就会大惊失色,对你肃然起敬。

Last updated