130.Heapify
1.Description(Medium)
Given an integer array, heapify it into a min-heap array.
For a heap array A, A[0] is the root of heap, and for each A[i], A[i * 2 + 1] is the left child of A[i] and A[i * 2 + 2] is the right child of A[i].
Clarification
What is heap?
Heap is a data structure, which usually have three methods: push, pop and top. where "push" add a new element the heap, "pop" delete the minimum/maximum element in the heap, "top" return the minimum/maximum element.
What is heapify?
Convert an unordered integer array into a heap array. If it is min-heap, for each element A[i], we will get A[i * 2 + 1] >= A[i] and A[i * 2 + 2] >= A[i].
What if there is a lot of solutions?
Return any of them.
Example
Given [3,2,1,4,5], return [1,2,3,4,5] or any legal heap array.
O(n) time complexity
2.Code
Heapify一个Array,也就是对array中的元素进行siftup或者siftdown的操作。根据min heap定义进行操作即可。
这里值得注意的是,对于扫描整个array的情况下,siftup和siftdown有complexity上的区别。
基本的原因在于:
siftdown的complexity,实质上是node相对于bottom移动的次数,而根据binary heap本身的特性,决定了约靠近bottom的node越多;O(n)
相对照的是siftup,是node相对于root节点的移动次数。O(nlogn)
如果Heapify可以用O(n)实现,那么HeapSort所需的时间复杂度为何是O(nlogn)?因为HeapSort其实包含了两个步骤,第一步,Heapify,build (min) heap,所需时间复杂度O(n),第二步,依次删除最小值(min heap),对于Heap来说,删除操作的复杂度是O(logn), 而这个删除需要执行O(n),来得到最终sort的结果,于是总体时间复杂度是O(nlogn)。
Version 1: Sift Up --O(nlogn)
//Version1: SiftUp O(nlogn)
public void siftup(int[] A,int i){
while(i!=0){
int parent=(i-1)/2;
if(A[parent]<A[i]){
break;
}
int temp=A[parent];
A[parent]=A[i];
A[i]=temp;
i=parent;
}
}
public void heapify(int[] A){
for(int i=0;i<A.length;i++){
siftup(A,i);
}
}
Version 2: Sift Down --O(n)
//Version 2:Sift Down O(n)
public void siftdown(int[] A,int i){
while(i<A.length){
int smallest=i;
if(i*2+1<A.length && A[i*2+1]<A[smallest]){
smallest=i*2+1;
}
if(i*2+2<A.length && A[i*2+2]<A[smallest]){
smallest=i*2+2;
}
if(smallest==i){
break;
}
int temp=A[smallest];
A[smallest]=A[i];
A[i]=temp;
i=smallest;
}
}
public void heapify2(int[] A){
for(int i=A.length/2;i>=0;i--){
siftdown(A,i);
}
}
Last updated
Was this helpful?