岛屿问题

https://labuladong.github.io/algo/1/9/

读完本文,你不仅学会了算法套路,还可以顺便去 LeetCode 上拿下如下题目:

200. 岛屿数量(中等)

1254. 统计封闭岛屿的数目(中等)

1020. 飞地的数量(中等)

695. 岛屿的最大面积(中等)

1905. 统计子岛屿(中等)

694. 不同的岛屿数量(中等)

———–

岛屿系列算法问题是经典的面试高频题,虽然基本的问题并不难,但是这类问题有一些有意思的扩展,比如求子岛屿数量,求形状不同的岛屿数量等等,本文就来把这些问题一网打尽。

岛屿系列题目的核心考点就是用 DFS/BFS 算法遍历二维数组

本文主要来讲解如何用 DFS 算法来秒杀岛屿系列题目,不过用 BFS 算法的核心思路是完全一样的,无非就是把 DFS 改写成 BFS 而已。

那么如何在二维矩阵中使用 DFS 搜索呢?如果你把二维矩阵中的每一个位置看做一个节点,这个节点的上下左右四个位置就是相邻节点,那么整个矩阵就可以抽象成一幅网状的「图」结构。

根据 学习数据结构和算法的框架思维,完全可以根据二叉树的遍历框架改写出二维矩阵的 DFS 代码框架:

// 二叉树遍历框架
void traverse(TreeNode root) {
    traverse(root.left);
    traverse(root.right);
}

// 二维矩阵遍历框架
void dfs(int[][] grid, int i, int j, boolean[] visited) {
    int m = grid.length, n = grid[0].length;
    if (i < 0 || j < 0 || i >= m || j >= n) {
        // 超出索引边界
        return;
    }
    if (visited[i][j]) {
        // 已遍历过 (i, j)
        return;
    }
    // 进入节点 (i, j)
    visited[i][j] = true;
    dfs(grid, i - 1, j, visited); // 上
    dfs(grid, i + 1, j, visited); // 下
    dfs(grid, i, j - 1, visited); // 左
    dfs(grid, i, j + 1, visited); // 右
}

因为二维矩阵本质上是一幅「图」,所以遍历的过程中需要一个 visited 布尔数组防止走回头路,如果你能理解上面这段代码,那么搞定所有岛屿系列题目都很简单。

这里额外说一个处理二维数组的常用小技巧,你有时会看到使用「方向数组」来处理上下左右的遍历,和前文 图遍历框架 的代码很类似:

// 方向数组,分别代表上、下、左、右
int[][] dirs = new int[][]{{-1,0}, {1,0}, {0,-1}, {0,1}};

void dfs(int[][] grid, int i, int j, boolean[] visited) {
    int m = grid.length, n = grid[0].length;
    if (i < 0 || j < 0 || i >= m || j >= n) {
        // 超出索引边界
        return;
    }
    if (visited[i][j]) {
        // 已遍历过 (i, j)
        return;
    }

    // 进入节点 (i, j)
    visited[i][j] = true;
    // 递归遍历上下左右的节点
    for (int[] d : dirs) {
        int next_i = i + d[0];
        int next_j = j + d[1];
        dfs(grid, next_i, next_j, visited);
    }
    // 离开节点 (i, j)
}

这种写法无非就是用 for 循环处理上下左右的遍历罢了,你可以按照个人喜好选择写法。

Last updated