Nine Chapter
  • Introduction
    • Summary
  • 1.Binary Search
    • Introduction
    • 458.Last position of target
    • 600.Smallest Rectangle Enclosing Black Pixels
    • 585.Maximum Number in Mountain Sequence
    • 183.Wood Cut
    • 62.Search in Rotated Sorted Array
    • 63.Search in Rotated Sorted Array II
    • 159.Find Minimum in Rotated Sorted Array
    • 160.Find Minimum in Rotated Sorted Array II
    • 75.Find Peak Element
    • 60.Search Insert Position
    • 28.Search a 2D Matrix
    • 240. Search a 2D Matrix II
    • 14.First Position of Target
    • 74.First Bad Version
    • 875. Koko Eating Bananas
    • 1011. Capacity To Ship Packages Within D Days (M)
    • 410. Split Array Largest Sum (H)
    • 475. Heaters (M)
    • 1044. Longest Duplicate Substring (H)
  • 2.Binary Tree
    • Summary
      • 二叉树八股文:递归改迭代
      • BST
      • Frame
    • 66.Binary Tree Preorder Traversal
    • 67.🌟Binary Tree Inorder Traversal
    • 145. Binary Tree Postorder Traversal (E)
    • 98.Validate Binary Search Tree(M)
    • 85.Insert Node in a Binary Search Tree
    • 104. Maximum Depth of Binary Tree(E)
    • 235. Lowest Common Ancestor of a Binary Search Tree (E)
    • 236.Lowest Common Ancestor of Binary Tree(M)
    • 578.Lowest Common Ancestor III
    • 1120.Subtree with Maximum Average
    • 596.Minimum Subtree
    • 480.Binary Tree Paths
    • 453.Flatten Binary Tree to Linked List
    • 110.Balanced Binary Tree
    • 376.Binary Tree Path Sum
    • 246.Binary Tree Path Sum II
    • 475.Binary Tree Maximum Path Sum II
    • 124.Binary Tree Maximum Path Sum (H)
    • Path Sum (*)
      • 112. Path Sum
      • 113. Path Sum II
      • 437. Path Sum III
    • 177.Convert Sorted Array to Binary Search Tree With Minimal Height
    • 7.Binary Tree Serialization
    • 72,73.Construct Binary Tree
    • Binary Search Tree Path
    • 245.Subtree
    • 469.Identical Binary Tree
    • 87.Remove Node in Binary Search Tree
    • 116.Populating Next Right Pointers in Each Node (M)
    • 114. Flatten Binary Tree to Linked List(M)
    • 654.Maximum Binary Tree (M)
    • 105. 🌟Construct Binary Tree from Preorder and Inorder Traversal (M)
    • 106. Construct Binary Tree from Inorder and Postorder Traversal (M)
    • 652. Find Duplicate Subtrees(M)
    • 230. Kth Smallest Element in a BST (M)
    • 538&1038. Convert BST to Greater Tree
    • 450. Delete Node in a BST (M)
    • 701. Insert into a Binary Search Tree (M)
    • 96. Unique Binary Search Trees
    • 95. Unique Binary Search Trees II (M)
    • 1373. Maximum Sum BST in Binary Tree (H)
    • 297. Serialize and Deserialize Binary Tree (H)
    • 222. Count Complete Tree Nodes (M)
    • 1120. Maximum Average Subtree
    • 341. Flatten Nested List Iterator
    • 333. Largest BST Subtree (M)
    • 543. Diameter of Binary Tree
    • Binary Tree Longest Consecutive Sequence(*)
      • 298.Binary Tree Longest Consecutive Sequence
      • 549. Binary Tree Longest Consecutive Sequence II (M)
  • 3.Breadth First Search
    • Introduction
      • BFS 算法解题套路框架
      • 双向 BFS 优化
    • 102.Binary Tree Level Order Traversal (M)
    • 103. Binary Tree Zigzag Level Order Traversal (M)
    • 107.Binary Tree Level Order Traversal II(M)
    • 618.Search Graph Nodes
    • 207.Course Schedule (M)
    • 210.Course Schedule II (M)
    • 611.Knight Shortest Path
    • 598.Zombie in Matrix
    • 133.Clone Graph (M)
    • 178.Graph Valid Tree
    • 7.Binary Tree Serialization
    • 574.Build Post Office
    • 573.Build Post Office II
    • 127.Topological Sorting
    • 127.Word Ladder
    • 126. Word Ladder II
    • (LeetCode)515.Find Largest Value in Each Tree Row
    • 111. Minimum Depth of Binary Tree (E)
    • 752. Open the Lock
    • 542. 01 Matrix (M)
    • 1306. Jump Game III (M)
  • 4.Depth First Search+BackTracking
    • Summary
      • FloodFill 算法
    • 136.Palindrome Partitioning
    • 39.Combination Sum
    • 40.Combination Sum II
    • 377. Combination Sum IV
    • 77.Combinations (M)
    • 78.Subsets (M)
    • 90.Subsets II (M)
    • 46.🌟Permutations
    • 47.Permutations II
    • 582.Word Break II
    • 490.The Maze (M)
    • 51.N-Queens (H)
    • 52. N-Queens II (H)
    • 698. Partition to K Equal Sum Subsets (M)
    • 22. Generate Parentheses (M)
    • 岛屿问题
      • 200.Number of Islands (M)
      • 1254. Number of Closed Islands (M)
      • 1020. Number of Enclaves (M)
      • 695. Max Area of Island (M)
      • 1905. Count Sub Islands (M)
      • 694. Number of Distinct Islands
    • 131. Palindrome Partitioning (M)
    • 967. Numbers With Same Consecutive Differences (M)
    • 79. Word Search (M)
    • 212. Word Search II (M)
    • 472. Concatenated Words (H)
    • Page 2
    • 291. Word Pattern II
    • 17. Letter Combinations of a Phone Number (M)
  • 5.LinkedList
    • Summary
      • 单链表的倒数第 k 个节点
      • Merge two/k sorted LinkedList
      • Middle of the Linked List
      • 判断链表是否包含环
      • 两个链表是否相交 Intersection of Two Linked Lists
      • 递归反转链表
      • 如何判断回文链表
    • 599.Insert into a Cyclic Sorted List
    • 21.Merge Two Sorted Lists (E)
    • 23.Merge k Sorted Lists (H)
    • 105.Copy List with Random Pointer
    • 141.Linked List Cycle (E)
    • 142.Linked List Cycle II (M)
    • 148.Sort List (M)
    • 86.Partition List (M)
    • 83.Remove Duplicates from Sorted List(E)
    • 82.Remove Duplicates from Sorted List II (M)
    • 206.Reverse Linked List (E)
    • 92.Reverse Linked List II (M)
    • 143.Reorder List (M)
    • 19.Remove Nth Node From End of List (E)
    • 170.Rotate List
    • 🤔25.Reverse Nodes in k-Group (H)
    • 452.Remove Linked List Elements
    • 167.Add Two Numbers
    • 221.Add Two Numbers II
    • 876. Middle of the Linked List (E)
    • 160. Intersection of Two Linked Lists (E)
    • 234. Palindrome Linked List (E)
    • 2130. Maximum Twin Sum of a Linked List (M)
  • 6.Array
    • Summary
      • 前缀和思路PrefixSum
      • 差分数组 Difference Array
      • 双指针Two Pointers
      • 滑动窗口算法算法
      • Sliding windows II
      • 二分搜索Binary Search
      • 排序算法
      • 快速选择算法
    • 604.Window Sum
    • 138.Subarray Sum
    • 41.Maximum Subarray
    • 42.Maximum Subarray II
    • 43.Maximum Subarray III
    • 620.Maximum Subarray IV
    • 621.Maximum Subarray V
    • 6.Merge Two Sorted Arrays
    • 88.Merge Sorted Array
    • 547.Intersection of Two Arrays
    • 548.Intersection of Two Arrays II
    • 139.Subarray Sum Closest
    • 65.Median of two Sorted Arrays
    • 636.132 Pattern
    • 402.Continuous Subarray Sum
    • 303. Range Sum Query - Immutable (E)
    • 304.Range Sum Query 2D - Immutable (M)
    • 560. Subarray Sum Equals K (M)
    • 370. Range Addition(M)
    • 1109. Corporate Flight Bookings(M)
    • 1094. Car Pooling (M)
    • 76. Minimum Window Substring(H)
    • 567. Permutation in String (M)
    • 438. Find All Anagrams in a String(M)
    • 3. Longest Substring Without Repeating Characters (M)
    • 380. Insert Delete GetRandom O(1) (M)
    • 710. Random Pick with Blacklist (H)
    • 528. Random Pick with Weight (M)
    • 26. Remove Duplicates from Sorted Array (E)
    • 27. Remove Element (E)
    • 283. Move Zeroes (E)
    • 659. Split Array into Consecutive Subsequences (M)
    • 4. Median of Two Sorted Arrays (H)
    • 48. Rotate Image (M)
    • 54. Spiral Matrix (M)
    • 59. Spiral Matrix II (M)
    • 918. Maximum Sum Circular Subarray
    • 128. Longest Consecutive Sequence (M)
    • 238. Product of Array Except Self (M)
    • 1438. Longest Continuous Subarray With Absolute Diff Less Than or Equal to Limit (M)
    • 1151. Minimum Swaps to Group All 1's Together (M)
    • 2134. Minimum Swaps to Group All 1's Together II
    • 2133. Check if Every Row and Column Contains All Numbers
    • 632. Smallest Range Covering Elements from K Lists (H)
    • 36. Valid Sudoku (M)
    • 383. Ransom Note
    • 228. Summary Ranges
  • 7.Two pointers
    • Summary
      • Two Sum
      • 2Sum 3Sum 4Sum 问题
    • 1.Two Sum I
    • 170.Two Sum III - Data structure design
    • 167.Two Sum II- Input array is sorted
    • 609.Two Sum - Less than or equal to target
    • 610.Two Sum - Difference equals to targe
    • 587.Two Sum - Unique pairs
    • 533.Two Sum - Closest to target
    • 443.Two Sum - Greater than target
    • 653. Two Sum IV - Input is a BST (M)
    • 57.3Sum
    • 59.3Sum Closest
    • 58.4Sum
    • 148.Sort Colors
    • 143.Sort Colors II
    • 31.Partition Array
    • 625.Partition Array II
    • 382.Triangle Count
      • 611. Valid Triangle Number
    • 521.Remove Duplicate Numbers in Array
    • 167. Two Sum II - Input Array Is Sorted (E)
    • 870. Advantage Shuffle (M)
    • 9. Palindrome Number (E)
    • 125. Valid Palindrome(E)
    • 5. Longest Palindromic Substring (M)
    • 42. Trapping Rain Water
    • 11. Container With Most Water (M)
    • 658. Find K Closest Elements (M)
    • 392. Is Subsequence
  • 8.Data Structure
    • Summary
      • 数据结构的存储方式
      • 单调栈
      • 单调队列
      • 二叉堆 Binary Heap
      • TreeMap
      • TreeSet
      • 🌟Trie
      • Trie Application
    • 155. Min Stack (E)
    • 716. Max Stack (E)
    • 1648. Sell Diminishing-Valued Colored Balls
    • 232. Implement Queue using Stacks (E)
    • 225. Implement Stack using Queues(E)
    • 84.Largest Rectangle in Histogram
    • 128.Hash Function
    • Max Tree
    • 544.Top k Largest Numbers
    • 545.Top k Largest Numbers II
    • 613.High Five
    • 606.Kth Largest Element II
    • 5.Kth Largest Element
    • 129.Rehashing
    • 4.Ugly Number II
    • 517.Ugly Number
    • 28. Implement strStr()
    • 594.strStr II
    • 146.LRU Cache
    • 460.LFU Cache
    • 486.Merge k Sorted Arrays
    • 130.Heapify
    • 215. Kth Largest Element in an Array (M)
    • 612.K Closest Points
    • 692. Top K Frequent Words
    • 347.Top K Frequent Elements
    • 601.Flatten 2D Vector
    • 540.Zigzag Iterator
    • 541.Zigzag Iterator II
    • 423.Valid Parentheses
    • 488.Happy Number
    • 547.Intersection of Two Arrays
    • 548.Intersection of Two Arrays II
    • 627.Longest Palindrome
    • 638.Strings Homomorphism
    • 138.Subarray Sum
    • 647.Substring Anagrams
    • 171.Anagrams
    • 739. Daily Temperatures(M)
    • 496. Next Greater Element I (E)
    • 503. Next Greater Element II(M)
    • 316. Remove Duplicate Letters(M) & 1081. Smallest Subsequence of Distinct Characters
    • 239. Sliding Window Maximum (H)
    • 355. Design Twitter (M)
    • 895. Maximum Frequency Stack (H)
    • 20. Valid Parentheses (E)
    • 921. Minimum Add to Make Parentheses Valid (M)
    • 1541. Minimum Insertions to Balance a Parentheses String (M)
    • 32. Longest Valid Parentheses (H)
    • Basic Calculator (*)
      • 224. Basic Calculator
      • 227. Basic Calculator II (M)
    • 844. Backspace String Compare
    • 295. Find Median from Data Stream
    • 208. Implement Trie (Prefix Tree)
    • 461.Kth Smallest Numbers in Unsorted Array
    • 1152.Analyze user website visit pattern
    • 811. Subdomain Visit Count (M)
    • 71. Simplify Path (M)
    • 362. Design Hit Counter
  • 9.Dynamic Programming
    • Summary
      • 最优子结构 Optimal Sustructure
      • 子序列解题模板
      • 空间压缩
      • 背包问题
        • Untitled
      • 股票买卖问题
      • KMP
    • 109.Triangle
    • 110.Minimum Path Sum
    • 114.Unique Paths
    • 115.Unique Paths II
    • 70.Climbing Stairs
    • 272.Climbing StairsII
    • 116.Jump Game
    • 117.Jump Game II
    • 322.Coin Change
    • 518. Coin Change 2 ()
    • Backpack I~VI
      • LintCode 563.Backpack V (M)
    • Best Time to Buy and Sell Stock(*)
      • 121. Best Time to Buy and Sell Stock
      • 122. Best Time to Buy and Sell Stock II (M)
      • 123. Best Time to Buy and Sell Stock III (H)
      • 188. Best Time to Buy and Sell Stock IV (H)
      • 309. Best Time to Buy and Sell Stock with Cooldown (M)
      • 714. Best Time to Buy and Sell Stock with Transaction Fee (M)
    • 394.Coins in a line
    • 395.Coins in a Line II
    • 509. Fibonacci Number (E)
    • 931. Minimum Falling Path Sum (M)
    • 494. Target Sum (M)
    • 72. Edit Distance (H)
    • 300.Longest Increasing Subsequence
    • 1143. Longest Common Subsequence (M)
    • 718. Maximum Length of Repeated Subarray
    • 583. Delete Operation for Two Strings (M)
    • 712. Minimum ASCII Delete Sum for Two Strings(M)
    • 53. Maximum Subarray (E)
    • 516. Longest Palindromic Subsequence (M)
    • 1312. Minimum Insertion Steps to Make a String Palindrome (H)
    • 416. Partition Equal Subset Sum (M)
    • 64. Minimum Path Sum(M)
    • 651. 4 Keys Keyboards (M)
    • House Robber (*)
      • 198. House Robber (M)
      • 213. House Robbber II
      • 337. House Robber III (M)
    • Word Break (*)
      • 139.Word Break (M)
    • 140. Word Break II (H)
    • 828. Count Unique Characters of All Substrings of a Given String (H)
    • 174. Dungeon Game (H)
    • 1567. Maximum Length of Subarray With Positive Product (M)
  • 10. Graph
    • Introduction
      • 有向图的环检测
      • 拓扑排序
      • 二分图判定
      • Union-Find
      • 最小生成树(Minimum Spanning Tree)算法
        • KRUSKAL 最小生成树算法
        • Prim 最小生成树算法
      • Dijkstra 最短路径算法
      • BFS vs DFS
    • 797. All Paths From Source to Target (M)
    • 785. Is Graph Bipartite? (M)
    • 886. Possible Bipartition (M)
    • 130. Surrounded Regions (M)
    • 990. Satisfiability of Equality Equations (M)
    • 721. Accounts Merge (M)
    • 323. Number of Connected Components in an Undirected Graph (M)
    • 261. Graph Valid Tree
    • 1135. Connecting Cities With Minimum Cost
    • 1584. Min Cost to Connect All Points (M)
    • 277. Find the Celebrity (M)
    • 743. Network Delay Time (M)
    • 1631. Path With Minimum Effort (M)
    • 1514. Path with Maximum Probability (M)
    • 589.Connecting Graph
    • 🌟787. Cheapest Flights Within K Stops (M)
    • 2050. Parallel Courses III (H)
    • 1293. Shortest Path in a Grid with Obstacles Elimination (H)
    • 864. Shortest Path to Get All Keys (H)
    • 269. Alien Dictionary (H)
    • 1192. Critical Connections in a Network (H)
    • 529. Minesweeper (M)
  • 11.Math
    • Page 1
Powered by GitBook
On this page
  • 1.Description(Medium)
  • 2.Code

Was this helpful?

  1. 9.Dynamic Programming

395.Coins in a Line II

1.Description(Medium)

There are n coins with different value in a line. Two players take turns to take one or two coins from left side until there are no more coins left. The player who take the coins with the most value wins.

Could you please decide the first player will win or lose?

Example

Given values array A =[1,2,2], returntrue.

Given A =[1,2,4], returnfalse.

2.Code

state : DP[i]表示从i到end能取到的最大value

function :

当我们走到i时,有两种选择

  1. 取values[i]

  2. 取values[i] + values[i+1]

1.我们取了values[i],对手的选择有values[i+1]或者values[i+1] + values[i+2]剩下的最大总value分别为DP[i+2]或DP[i+3], 对手也是理性的所以要让我们得到最小value

所以value1 = values[i] + min(DP[i+2], DP[i+3]).

2.我们取了values[i]和values[i+1]同理value2 = values[i] + values[i+1] + min(DP[i+3], DP[i+4])

最后

DP[I] = max(value1, value2)
state: dp[i]表示,在第i个硬币的位置,先出手的人能拿到的最大值。
逻辑是这样的,如果我现在在第i个coin的位置,我拿一个,那么因为对手可以拿1或者2,所以我的value是,
value[i] + dp[i + 2] 或者 value[i] + dp[i + 3]
因为对手是理智的,所以他总是尝试让我的value尽可能小,
于是我拿到grab_one = value[i] + min(dp[i + 2], dp[i + 3])
同样的道理,如果我现在在第i个coin的位置,我拿两个,
于是我拿到grab_two = value[i] + value[i + 1] + min(dp[i + 3], dp[i + 4])。

然后我的策略是尽可能多拿,于是我的dp[i] = max(grab_one, grab_two)。
这道题目,可以初始化只剩下1个,只剩下2个这两种情况,从i = n - 3为下标的地方开始,
因为要考虑到i + 4,所以需要在dp矩阵后面额外再补2个0

动态规划4要素

  • State:

    • dp[i] 现在还剩i个硬币,现在当前取硬币的人最后最多取硬币价值

  • Function:

    • i 是所有硬币数目

    • sum[i] 是后i个硬币的总和

    • dp[i] = sum[i]-min(dp[i-1], dp[i-2])

  • Intialize:

    • dp[0] = 0

    • dp[1] = coin[n-1]

    • dp[2] = coin[n-2] + coin[n-1]

  • Answer:

    • dp[n]

可以画一个树形图来解释:

                  [5, 1, 2, 10] dp[4]
        (take 5) /             \ (take 5, 1)
                /               \
        [1, 2, 10] dp[3]         [2, 10] dp[2]
(take 1) /     \ (take 1, 2)  (take 2) / \ (take 2, 10)
        /       \                     /   \
  [2, 10] dp[2]  [10] dp[1]     [10] dp[1] [] dp[0]

也就是说,每次的剩余硬币价值最多值dp[i],是当前所有剩余i个硬币价值之和sum[i],减去下一手时对手所能拿到最多的硬币的价值,即dp[i] = sum[i] - min(dp[i - 1], dp[i - 2])

当我们处在i处时,我们有两种选择,拿一个还是拿两个硬币,我们现在分情况讨论:

  1. 当我们只拿一个硬币values[i]时,那么对手有两种选择,拿一个硬币values[i+1],或者拿两个硬币values[i+1] + values[i+2] a) 当对手只拿一个硬币values[i+1]时,我们只能从i+2到end之间来取硬币,所以我们能拿到的最大硬币数为dp[i+2] b) 当对手拿两个硬币values[i+1] + values[i+2]时,我们只能从i+3到end之间来取硬币,所以我们能拿到的最大硬币数为dp[i+3] 由于对手的目的是让我们拿较小的硬币,所以我们只能拿dp[i+2]和dp[i+3]中较小的一个,所以对于我们只拿一个硬币的情况,我们能拿到的最大钱数为values[i] + min(dp[i+2], dp[i+3])

  2. 当我们拿两个硬币values[i] + values[i + 1]时,那么对手有两种选择,拿一个硬币values[i+2],或者拿两个硬币values[i+2] + values[i+3] a) 当对手只拿一个硬币values[i+2]时,我们只能从i+3到end之间来取硬币,所以我们能拿到的最大硬币数为dp[i+3] b) 当对手拿两个硬币values[i+2] + values[i+3]时,我们只能从i+4到end之间来取硬币,所以我们能拿到的最大硬币数为dp[i+4] 由于对手的目的是让我们拿较小的硬币,所以我们只能拿dp[i+3]和dp[i+4]中较小的一个,所以对于我们只拿一个硬币的情况,我们能拿到的最大钱数为values[i] + values[i + 1] + min(dp[i+3], dp[i+4])

综上所述,递推式就有了 dp[i] = max(values[i] + min(dp[i+2], dp[i+3]), values[i] + values[i + 1] + min(dp[i+3], dp[i+4])) 这样当我们算出了dp[0],知道了第一个玩家能取出的最大钱数,我们只需要算出总钱数,然后就能计算出另一个玩家能取出的钱数,二者比较就知道第一个玩家能否赢了s

Previous394.Coins in a lineNext509. Fibonacci Number (E)

Last updated 5 years ago

Was this helpful?

这道题是之前那道的延伸,由于每个硬币的面值不同,所以那道题的数学解法就不行了,这里我们需要使用一种方法叫做极小化极大算法Minimax,这是博弈论中比较经典的一种思想,LeetCode上有一道需要用这种思路解的题。这道题如果没有接触过相类似的题,感觉还是蛮有难度的。我们需要用DP来解,我们定义一个一维数组dp,其中dp[i]表示从i到end可取的最大钱数,大小比values数组多出一位,若n为values的长度,那么dp[n]先初始化为0。我们是从后往前推,我们想如果是values数组的最后一位,及i = n-1时,此时dp[n-1]应该初始化为values[n-1],因为拿了肯定比不拿大,钱又没有负面额;那么继续往前推,当i=n-2时,dp[n-2]应该初始化为values[n-2]+values[n-1],应为最多可以拿两个,所以最大值肯定是两个都拿;当i=n-3时,dp[n-3]应该初始化为values[n-3]+values[n-2],因为此时还剩三个硬币,你若只拿一个,那么就会给对手留两个,当然不行,所以自己要拿两个,只能给对手留一个,那么到目前位置初始化的步骤就完成了,下面就需要找递推式了:

http://www.cnblogs.com/grandyang/p/5864323.html
Coins in a Line
Guess Number Higher or Lower II